

RDS PostgreSQL

A Journey Down the Amazon
Gabrielle Roth

SCALE 14x

About me

● “I use Postgres so I don't have to think”

● Co-founder & -leader of PDXPUG

● Pg user since 7.2? 7.4?

● Always on my hardware or VMs that were
(nominally) under my control

● Been using RDS in production for about a year
and a half now

● Currently work for RenewFinancial

Our Environment

● Many small databases

● Low but bursty tx

● Combo of RDS and self-hosted

● All Postgres (-1 MySQL)

Topics

● What is this RDS thing, anyway

● Basic setup

● Things that ROCK about RDS

● Things that are important to me that are missing
or weird

AWS? EC2? RDS?

● AWS = Amazon Web Services

● EC2 = Elastic Compute Cloud

● RDS = Relational Database Services

● Postgres on EC2 = Pg on a hosted VM

● RDS Postgres = managed Pg offering

● https://www.expeditedssl.com/aws-in-plain-english

https://www.expeditedssl.com/aws-in-plain-english

RDS Feature highlights

● Replication, failover, backups – I don't have to deal
with configuring them

● Easy read replicas and encryption

● Scalability!

● Automatic patching & OS upgrades

● New! Point & click upgrade between (some) versions

● SDK supports many languages, including a robust CLI

Great, where do I sign up?

Why are you doing this?

● I want someone else to blame!

● To save money

● Easy setup, failover, restore

● To make things easier for your DBA

...or maybe get rid of your DBA

I'll save money!

● You pay for:

– Instance

– Storage

– Data transfer out

– Support

● Prices change frequently

● Amazon has a cost calculator:

http://calculator.s3.amazonaws.com/index.html

I'll save money!

Recommendations:

● Check out Trusted Advisor (part of support)

● Review your bills every month

● Set up an alert so you know when you're
getting close to your limit

● Power down unused test instances

● Purchase reserved instances, but do the math

I want easy setup, failover, and
restore!

WIN.

● Don't have to deal with:

– Configuring replication

– Monitoring replication

– Recovering/cleaning up after a failover

– Configuring or scheduling backups

● Read replicas are just a mouse click away

● Restore is so simple, it's ideal for spinning up quick instances for
ad-hoc dev work, reporting, what have you.

What is an “Instance”

● VM host, sort of

● No direct system access (no ssh)

● Instance managed via AWS tools (console, API)

– Start up, power down, apply some configuration

● Database access only via psql, pgAdmin, etc

Identity & Access Management
(IAM)

● Limit users' authority to manage the instance

– Create/destroy instances, snapshots, etc

● Interactions with an instance, not a database

● Guard the keys closely

● Use CloudTrail to track activity

Setup Overview

CLI/API

● CLI toolkit and the API allow you to automate
everything!

● Some things aren't very straightforward (eg
downloading large log files)

● There are some things you can do from the CLI
that you can't do from the console (eg review
event notifications)

CLI/API

● Two CLIs: rds and aws

– Support recommends the aws cli over the rds cli

– They are very similar, but just different enough that it's
aggravating to switch back and forth

● Download, install, configure

– Java environment

– ~/.aws/config and ~/.aws/credentials

● Advanced Usage of the AWS CLI

www.youtube.com/watch?v=vP56l7qThNs

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Parameter group, aka
postgresql.conf, sort of

● It's all there

● You just can't change all of it.

● The GUI is not user friendly, but neither is the
CLI.

● Keep the (Pg) docs handy.

● And this:

www.davidmkerr.com/2013/11/tune-your-
postgres-rds-instance-via.html

Parameters

Parameters

● Parameters you can't modify:

– Anything in the default parameter group

● Create your own!

● Create several! (They'll be available to all your instances.)

– Anything to do with streaming rep

– Several logging params (target file, format,
log_line_prefix)

– System layout (data directory, location of conf files)

– Server encoding

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Instance classes

● db.[class].[size]

● db.t1.micro: testing only (not current)

● db.t2.[size]: burst-capable (can max the CPU)

● db.m4.[size]: “standard”

● db.r3.[size]: memory optimized

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Regions vs AZs

● A Region is a geographical area. US East, US
West (2), EU West, EU Central, AP SE (2), AP
NE, SA.

● An Availability Zone is an area within that
region, e.g. us-east-1c

– Think of it as a single DC.

● Multi-AZ means you failover to another area
within the same region

Create an instance - CLI

aws rds create-db-instance \

--db-instance-identifier gabs-db \

--engine postgres \

--engine-version 9.3.5 \

--master-username gabrielle \

--master-user-password my_excellent_password \

--db-parameter-group-name load-params \

--db-instance-class db.t2.small \

--allocated-storage 100 \

--no-multi-az \

--backup-retention-period 30 \

--no-publicly-accessible \

--db-subnet-group-name gabs-db-subnet \

--vpc-security-group-ids sg-xxxx

Load your data

● docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
PostgreSQL.Procedural.Importing.html

● pg_restore or Amazon DMS

● Take a snapshot!

● VACUUM [FREEZE] ANALYZE;

● Change to your prod param group + add Multi-AZ;
reboot.

Finishing touches

aws rds modify-db-instance \

--db-instance-identifier gabs-db \

--db-parameter-group-name load-params \

--multi-az \

--apply-immediately

...wait...

aws rds reboot-db-instance \

--db-instance-identifier gabs-db \

[--failover | --no-failover]

Failover

● AWS handles replication for you

● Works well, but you will have a “brief” outage

Restore/PITR

It's easy!

...once you know how

(DR) Restore

● Choose the snapshot (or point in time) you want to recover
from

● Restore it to a new instance

● Rename the old one to get it out of the way

– ...and put it in the default security group, so nobody can access it

● Rename the new one to the desired instance name

● TEST IT before you destroy anything!

● Make a checklist and have regular fire drills with this
process

Restore from a snapshot

aws rds restore-db-instance-from-db-snapshot \

--db-instance-identifier restore-test \

--db-snapshot-identifier rds:gabs-db-2015-02-05-08-05 \

...whatever other options you want...

...wait...

aws rds modify-db-instance \

--db-instance-identifier restore-test \

--db-parameter-group-name prod-param-group \

--vpc-security-group-ids sg-xxxx \

--apply-immediately

...and then run ANALYZE.

Point-in-Time Recovery (PITR)

aws rds restore-db-instance-to-point-in-time \

--source-db-instance-identifier gabs-db \

--target-db-instance-identifier gabs-db-well-hell \

--restore-time 2015-01-22T09:43:00Z \

...whatever other options you want …

...wait...

aws rds modify-db-instance \

--db-instance-identifier gabs-db-well-hell \

--db-parameter-group-name prod-param-group \

--vpc-security-group-ids sg-xxxx \

--apply-immediately

...and then run ANALYZE.

Restore/Recovery con't.

● Can sometimes take a while

● Choosing a different storage type can/will slow
it down a lot

● You can't resize storage as part of this process

– Storage can only be expanded, anyway

“I don't need a DBA.”

You need a DBA to:

Configure Pg appropriately

Choose appropriate instance size for your workload

Figure out what in [Sam Hill] the ORM is doing

Secure and audit databases

Ensure data quality

Tune queries

Mentor devs

...

Things to remember

● Some [important] Postgres features are not
available.

● You are not the database superuser.

● This is not your system.

● “We've just come to accept a certain amount of
unplanned downtime.”

Where to get help

● Purchase the support, at least at first

– RDS support people ROCK.

● Hang out in the forums. Amazon folks monitor
them pretty closely

● The copious documentation

– But cross-reference your findings

● @dog_rates

Postgres features you may miss:

No pg_hba.conf

● Access is managed by “VPC”, Virtual Private
Cloud + database security groups

● You can't control access per-database, -user,
-source, or auth method, as you would with a
pg_hba.conf

● No way to force SSL

Postgres features you may miss:
installing whatever extensions you want

● Choose from those AWS makes available

● They do add more periodically, and are
responsive to community requests

● You may be able to install certain extensions
via the old-fashioned way: SQL

● See www.databasesoup.com/2014/12/loading-pgpartman-on-
rds-or-heroku.html

Currently available extensions

● Ignore output from this:

SELECT * FROM pg_available_extensions ORDER BY name;

● Use this instead:

SHOW rds.extensions;

btree_gin, btree_gist, chkpass, citext, cube, dblink, dict_int, dict_xsyn,
earthdistance, fuzzystrmatch, hstore, intagg, intarray, ip4r, isn, ltree,
pgcrypto, pgrowlocks, pgstattuple, pg_buffercache,
pg_stat_statements, pg_trgm, plcoffee, plls, plperl, plpgsql, pltcl,
plv8, postgis, postgis_tiger_geocoder, postgis_topology,
postgres_fdw, sslinfo, tablefunc, test_parser, tsearch2, unaccent,
uuid-ossp

● SELECT name, version FROM pg_extension;

You are not the database superuser.

● Can't pg_dumpall

– DMS? aws.amazon.com/dms/

● Manual VACUUM skips certain tables

– pg_database, pg_tablespace, ...

● <insufficient privs> in pg_stat_activity

● You don't get all necessary log messages

– autovacuum (fixed in 9.4.5)

– lock_waits (fixed in 9.4.3)

● REASSIGN … nope.

You are not the database superuser.

psql: FATAL: remaining connection slots are reserved
for non-replication superuser connections

You are not the database superuser.

● Good news!

rds_superuser_reserved_connections available
in 9.4.5.

● Or: hinky workaround, must plan in advance:

ALTER database gabs_db CONNECTION LIMIT [x];

Where x is something like:

max_connections - superuser_reserved_connections - 3

This is not your system.

● DB access only (psql, etc)

● Patches etc get applied for you (yay!)

● OS upgrades won't cause downtime (usually)

● Pg upgrades will cause downtime

– Usually new features require a Pg upgrade

● Easy upgrades between certain versions only

Let's talk about monitoring.

● Cloudwatch metrics

– Mostly “system” metrics; database connections

– Can download existing

– Can create your own

Cloudwatch metrics

Let's talk about monitoring (2).

● Pg logs

– kind of a PITA to access

– And you don't get to choose the format or the
log_line_prefix

– ...but you can make pgbadger work with it

“error” logs

“error” logs

“Unplanned downtime.”

● They can failover and fail/restart, and you may not
get to know why

● If you're taking more than your share of resources,
AWS will stop you (via instance restart/failover)

● Read the SLA

– aws.amazon.com/rds/sla/

● Build failure handling into your architecture

● Have a good DR plan!

Let's talk (more) about backups and
restores.

● Automated snaps once a day only at this time

● Automatic snapshots are destroyed when you
destroy an instance

● Backups/snapshots are local AZ only

● Save your backups off to another region!

– Don't forget to age them out, though

– It's difficult to copy your snapshots completely off of
Amazon's services

Copy snap to other region

aws rds copy-db-snapshot \

--source-db-snapshot-identifier rds:gabs-db-2016-01-05-08-
05 \

--target-db-snapshot-identifier [ARN] \

--region us-east-1c

ARN:

arn:aws:rds:us-west-1:12345678910:snapshot:rds:gabs-db-
2016-01-05-08-05

In conclusion...

Pros:

● Great for a dev env

● Easy setup

● Easy restore/PITR

● Easy failover

● Can automate
testing/deploys:
snapshot, test, rollback

Cons:

● Not as configurable

● You need your own
monitoring

● Security concerns

● Who owns your data?

● “Stuff breaks and I don't
get to know why”

Questions?

@gorthx
gorthx@gmail.com

gorthx.wordpress.com

mailto:gorthx@gmail.com

Other conferences you may like

PgConfUS – 18-20 Apr 2016, NYC

http://www.pgconf.us

Postgres Open – Sept 2016, Dallas

http://postgresopen.org/

PgConf.EU – sometime, somewhere

http://pgconf.eu/

http://www.pgconf.us/
http://postgresopen.org/

Thank you!

#pdxpug

Denish Patel

Grant McAlister

Magnus Hagander

Selena Deckelmann

