
Scaling out by distributing and 
replicating data in Postgres-XC

Ashutosh Bapat
@Postgres Open 2012



Agenda

● What is Postgres-XC

● Postgres-XC architecture over-view

● Data distribution in XC

● Effect of data distribution on performance

● Example DBT-1 schema



What is Postgres-XC

● Shared Nothing Cluster
– Multiple collaborating PostgreSQL-like servers

– No resources shared

– Scaling by adding commodity hardware

● Write-scalable
– Write/Read scalable by adding nodes

– Multiple nodes where writes can be issued

● Syncronous
– Writes to one node are refl ected on all the nodes

● Transparent
– Applications need not care about the data distribution



Coordinators

Add coordinators

Datanodes

Add datanodes

SQL + libpq interface

Postgres-XC cluster

SQL statements from applications

T
ransa

ction info

GTM

Postgres-XC architecture



● Replicated tables
– Each row of the table is stored on all the datanodes where 

the table is replicated

● Distributed tables
– Each row exists only on a single datanode

– Distribution strategies

● HASH
● MODULO
● ROUNDROBIN
● User defined functions (TBD)

Distribution strategies



Replicated Table

Writes

write write write

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

Reads

read

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4



Replicated Tables

● Statement level replication

● Each write needs to be replicated
– writes are costly

● Read can happen on any node (where table is 
replicated)

– reads from different coordinators can be routed to different 
nodes

● Useful for relatively static tables, with high read load



Distributed Tables

Combiner

Read

read read read

val val2

1 2

2 10

3 4

val val2

11 21

21 101

31 41

val val2

10 20

20 100

30 40

Write

write

val val2

1 2

2 10

3 4

val val2

11 21

21 101

31 41

val val2

10 20

20 100

30 40



Distributed Tables

● Write to a single row is applied only on the node 
where the row resides
– Multiple rows can be written in parallel

● Scanning rows spanning across the nodes (e.g. table 
scans) can hamper performance

● Point reads and writes based on the distribution 
column value show good performance

– Datanode where the operation happens can be identifi ed by 
the distribution column value



Distributed query processing in Postgres-
XC



Distributed query processing in Postgres-XC

● Coordinator
– Accepts queries and plans them

– Finds the right data-nodes from where to fetch the data

– Frames queries to be sent to these data-nodes

– Gathers data from data-nodes

– Processes it to get the desired result

● Datanode
– Executes queries from coordinator like PostgreSQL

– Has same capabilities as PostgreSQL



Query processing balance

● Coordinator tries to delegate maximum query 
processing to data-nodes
– Indexes are located on datanodes

– Materialization of huge results is avoided in case of sorting, 
aggregation, grouping, JOINs etc.

– Coordinator is freed to handle large number of connections

● Distributing data wisely helps coordinator to delegate 
maximum query processing and improve performance

● Delegation is often termed as shipping



SQL prompt



Deciding the right distribution strategy



Read-write load on tables

● High point reads (based on distribution column)
– Distributed or replicated

● High read activities but no frequent writes
– Better be replicated

● High point writes

– Better be distributed

● High insert-load, but no frequent update/delete/read
– Better be round-robin



● Find the relations/columns participating in equi-Join 
conditions, WHERE clause etc.
– Distribute on those columns

● Find columns participating in GROUP BY, DISTINCT 
clauses
– Distribute on those columns

● Find columns/tables which are part of primary key and 
foreign key constraints
– Global constraints are not yet supported in XC

– Distribute on those columns

Query analysis (Frequently occuring queries)



Thumb rules

● Infrequently written tables participating in JOINs with 
many other tables (Dimension tables)
– Replicated table

● Frequently written tables participating in JOINs with 
replicated tables
– Distributed table

● Frequently written tables participating in JOINs with 
each other, with equi-JOINing columns of same data 
type
– Distribute both of them by the columns participating in JOIN on 

same nodes

● Referenced tables
– Better be replicated



DBT-1 schema

C_ID
C_UNAME
C_PASSWD
C_FNAME
C_LNAME
C_ADDR_ID
C_PHONE
C_EMAIL
C_SINCE
C_LAST_VISIT
C_LOGIN
C_EXPIRATION
C_DISCOUNT
C_BALANCE
C_YTD_PMT
C_BIRTHDATE
C_DATA

ADDR_ID
ADDR_STREET1
ADDR_STREET2
ADDR_CITY
ADDR_STATE
ADDR_ZIP
ADDR_CO_ID
ADDR_C_ID

O_ID
O_C_ID
O_DATE
O_SUB_TOTAL
O_TAX
O_TOTAL
O_SHIP_TYPE
O_BILL_ADDR_ID
O_SHIP_ADDR_ID
O_STATUS

CUSTOMER

ADDRESS

ORDERS

OL_ID
OL_O_ID
OL_I_ID
OL_QTY
OL_DISCOUNT
OL_COMMENTS
OL_C_ID

ORDER_LI
NE

I_ID
I_TITLE
I_A_ID
I_PUB_DATE
I_PUBLISHER
I_SUBJECT
I_DESC
I_RELATED1
I_RELATED2
I_RELATED3
I_RELATED4
I_RELATED5
I_THUMBNAIL
I_IMAGE
I_SRP
I_COST
I_AVAIL
I_ISBN
I_PAGE
I_BACKING
I_DIMENASIONS

ITEM

CX_I_ID
CX_TYPE
CX_NUM
CX_NAME
CX_EXPIRY
CX_AUTH_ID
CX_XACT_AMT
CX_XACT_DATE
CX_CO_ID
CX_C_ID

CC_XACTS

OL_ID
OL_O_ID
OL_I_ID
OL_QTY
OL_DISCOUNT
OL_COMMENTS
OL_C_ID

AUTHOR

ST_I_ID
ST_STOCK

STOCK

SC_ID
SC_C_ID
SC_DATE
SC_SUB_TOTAL
SC_TAX
SC_SHIPPING_CO
ST
SC_TOTAL
SC_C_FNAME
SC_C_LNAME
SC_C>DISCOUNT

SHOPPING_CART

SCL_SC_ID
SCL_I_ID
SCL_QTY
SCL_COST
SCL_SRP
SCL_TITLE
SCL_BACKING
SCL_C_ID

SHOPPING_CART_LINE

CO_ID
CO_NAME
CO_EXCHANGE
CO_CURRENCY

COUNTRY

Distributed with 
Customer ID

Replicated

Distributed with 
ItemID

Distributed with 
Shopping Cart 

ID



Example DBT-1 (1)

● author, item
– Less frequently written

– Frequently read from

– Author and item are frequently JOINed

● Dimension tables
– Hence replicated on all nodes



Example DBT-1 (2)

● customer, address, orders, order_line, cc_xacts
– Frequently written

● hence distributed
– Participate in JOINs amongst each other with customer_id as 

JOIN key

– point SELECTs based on customer_id

● hence diistributed by hash on customer_id so that JOINs 
are shippable

– Participate in JOINs with item

● Having item replicated helps pushing JOINs to datanode



Example DBT-1 (3)

● Shopping_cart, shopping_cart_line
– Frequently written

● Hence distributed
– Point selects based on column shopping_cart_id

● Hence distributed by hash on shopping_cart_id
– JOINs with item

● Having item replicated helps



DBT-1 scale-up

● Old data, we will publish 
bench-marks for 1.0 soon.

● DBT-1 (TPC-W) benchmark 
with some minor 
modification to the schema

● 1 server = 1 coordinator + 1 
datanode on same machine

● Coordinator is CPU bound
● Datanode is I/O bound



Other scaling tips



Using GTM proxy

● GTM can be a bottleneck
– All nodes get snapshots, transactions ids etc. from GTM

● GTM-proxy helps reduce the load on GTM
– Runs on each physical server

– Caches information about snapshots, transaction ids etc.

– Serves logical nodes on that server



Adding coordinator and datanode

● Coordinator
– Scaling connection load

– Too much load on coordinator

– Query processing mostly happens on coordinator

● Datanode
– Data scalability

● Number of tables grow – new nodes for new 
tables/databases

● Distributed table sizes grow – new nodes providing space 
for additional data

– Redundancy



Impact of transaction management on performance

● 2PC is used when
– More than one node performs write in a transaction

– Explicit 2PC is used

– More than one node performs write during a single statement

● Only nodes performing writes participate in 2PC

● Design transactions such that they span across as 
few nodes as possible.



DBT-2 (sneak peek)

● Like TPC-C

● Early results show 4.3 times scaling with 5 servers
– More details to come ... 



Thank you
ashutosh.bapat@enterprisedb.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

