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What is Postgres-XC

● Shared Nothing Cluster
– Multiple collaborating PostgreSQL-like servers

– No resources shared

– Scaling by adding commodity hardware

● Write-scalable
– Write/Read scalable by adding nodes

– Multiple nodes where writes can be issued

● Syncronous
– Writes to one node are refl ected on all the nodes

● Transparent
– Applications need not care about the data distribution



Coordinators

Add coordinators

Datanodes

Add datanodes

SQL + libpq interface

Postgres-XC cluster

SQL statements from applications

T
ransa

ction info

GTM

Postgres-XC architecture



● Replicated tables
– Each row of the table is stored on all the datanodes where 

the table is replicated

● Distributed tables
– Each row exists only on a single datanode

– Distribution strategies

● HASH
● MODULO
● ROUNDROBIN
● User defined functions (TBD)

Distribution strategies



Replicated Table

Writes

write write write

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

Reads

read

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4

val val2

1 2

2 10

3 4



Replicated Tables

● Statement level replication

● Each write needs to be replicated
– writes are costly

● Read can happen on any node (where table is 
replicated)

– reads from different coordinators can be routed to different 
nodes

● Useful for relatively static tables, with high read load



Distributed Tables

Combiner

Read

read read read

val val2

1 2

2 10

3 4

val val2

11 21

21 101

31 41

val val2

10 20

20 100

30 40

Write

write

val val2

1 2

2 10

3 4

val val2

11 21

21 101

31 41

val val2

10 20

20 100

30 40



Distributed Tables

● Write to a single row is applied only on the node 
where the row resides
– Multiple rows can be written in parallel

● Scanning rows spanning across the nodes (e.g. table 
scans) can hamper performance

● Point reads and writes based on the distribution 
column value show good performance

– Datanode where the operation happens can be identifi ed by 
the distribution column value



Distributed query processing in Postgres-
XC



Distributed query processing in Postgres-XC

● Coordinator
– Accepts queries and plans them

– Finds the right data-nodes from where to fetch the data

– Frames queries to be sent to these data-nodes

– Gathers data from data-nodes

– Processes it to get the desired result

● Datanode
– Executes queries from coordinator like PostgreSQL

– Has same capabilities as PostgreSQL



Query processing balance

● Coordinator tries to delegate maximum query 
processing to data-nodes
– Indexes are located on datanodes

– Materialization of huge results is avoided in case of sorting, 
aggregation, grouping, JOINs etc.

– Coordinator is freed to handle large number of connections

● Distributing data wisely helps coordinator to delegate 
maximum query processing and improve performance

● Delegation is often termed as shipping



SQL prompt



Deciding the right distribution strategy



Read-write load on tables

● High point reads (based on distribution column)
– Distributed or replicated

● High read activities but no frequent writes
– Better be replicated

● High point writes

– Better be distributed

● High insert-load, but no frequent update/delete/read
– Better be round-robin



● Find the relations/columns participating in equi-Join 
conditions, WHERE clause etc.
– Distribute on those columns

● Find columns participating in GROUP BY, DISTINCT 
clauses
– Distribute on those columns

● Find columns/tables which are part of primary key and 
foreign key constraints
– Global constraints are not yet supported in XC

– Distribute on those columns

Query analysis (Frequently occuring queries)



Thumb rules

● Infrequently written tables participating in JOINs with 
many other tables (Dimension tables)
– Replicated table

● Frequently written tables participating in JOINs with 
replicated tables
– Distributed table

● Frequently written tables participating in JOINs with 
each other, with equi-JOINing columns of same data 
type
– Distribute both of them by the columns participating in JOIN on 

same nodes

● Referenced tables
– Better be replicated



DBT-1 schema

C_ID
C_UNAME
C_PASSWD
C_FNAME
C_LNAME
C_ADDR_ID
C_PHONE
C_EMAIL
C_SINCE
C_LAST_VISIT
C_LOGIN
C_EXPIRATION
C_DISCOUNT
C_BALANCE
C_YTD_PMT
C_BIRTHDATE
C_DATA

ADDR_ID
ADDR_STREET1
ADDR_STREET2
ADDR_CITY
ADDR_STATE
ADDR_ZIP
ADDR_CO_ID
ADDR_C_ID

O_ID
O_C_ID
O_DATE
O_SUB_TOTAL
O_TAX
O_TOTAL
O_SHIP_TYPE
O_BILL_ADDR_ID
O_SHIP_ADDR_ID
O_STATUS

CUSTOMER

ADDRESS

ORDERS

OL_ID
OL_O_ID
OL_I_ID
OL_QTY
OL_DISCOUNT
OL_COMMENTS
OL_C_ID

ORDER_LI
NE

I_ID
I_TITLE
I_A_ID
I_PUB_DATE
I_PUBLISHER
I_SUBJECT
I_DESC
I_RELATED1
I_RELATED2
I_RELATED3
I_RELATED4
I_RELATED5
I_THUMBNAIL
I_IMAGE
I_SRP
I_COST
I_AVAIL
I_ISBN
I_PAGE
I_BACKING
I_DIMENASIONS

ITEM

CX_I_ID
CX_TYPE
CX_NUM
CX_NAME
CX_EXPIRY
CX_AUTH_ID
CX_XACT_AMT
CX_XACT_DATE
CX_CO_ID
CX_C_ID

CC_XACTS

OL_ID
OL_O_ID
OL_I_ID
OL_QTY
OL_DISCOUNT
OL_COMMENTS
OL_C_ID

AUTHOR

ST_I_ID
ST_STOCK

STOCK

SC_ID
SC_C_ID
SC_DATE
SC_SUB_TOTAL
SC_TAX
SC_SHIPPING_CO
ST
SC_TOTAL
SC_C_FNAME
SC_C_LNAME
SC_C>DISCOUNT

SHOPPING_CART

SCL_SC_ID
SCL_I_ID
SCL_QTY
SCL_COST
SCL_SRP
SCL_TITLE
SCL_BACKING
SCL_C_ID

SHOPPING_CART_LINE

CO_ID
CO_NAME
CO_EXCHANGE
CO_CURRENCY

COUNTRY

Distributed with 
Customer ID

Replicated

Distributed with 
ItemID

Distributed with 
Shopping Cart 

ID



Example DBT-1 (1)

● author, item
– Less frequently written

– Frequently read from

– Author and item are frequently JOINed

● Dimension tables
– Hence replicated on all nodes



Example DBT-1 (2)

● customer, address, orders, order_line, cc_xacts
– Frequently written

● hence distributed
– Participate in JOINs amongst each other with customer_id as 

JOIN key

– point SELECTs based on customer_id

● hence diistributed by hash on customer_id so that JOINs 
are shippable

– Participate in JOINs with item

● Having item replicated helps pushing JOINs to datanode



Example DBT-1 (3)

● Shopping_cart, shopping_cart_line
– Frequently written

● Hence distributed
– Point selects based on column shopping_cart_id

● Hence distributed by hash on shopping_cart_id
– JOINs with item

● Having item replicated helps



DBT-1 scale-up

● Old data, we will publish 
bench-marks for 1.0 soon.

● DBT-1 (TPC-W) benchmark 
with some minor 
modification to the schema

● 1 server = 1 coordinator + 1 
datanode on same machine

● Coordinator is CPU bound
● Datanode is I/O bound



Other scaling tips



Using GTM proxy

● GTM can be a bottleneck
– All nodes get snapshots, transactions ids etc. from GTM

● GTM-proxy helps reduce the load on GTM
– Runs on each physical server

– Caches information about snapshots, transaction ids etc.

– Serves logical nodes on that server



Adding coordinator and datanode

● Coordinator
– Scaling connection load

– Too much load on coordinator

– Query processing mostly happens on coordinator

● Datanode
– Data scalability

● Number of tables grow – new nodes for new 
tables/databases

● Distributed table sizes grow – new nodes providing space 
for additional data

– Redundancy



Impact of transaction management on performance

● 2PC is used when
– More than one node performs write in a transaction

– Explicit 2PC is used

– More than one node performs write during a single statement

● Only nodes performing writes participate in 2PC

● Design transactions such that they span across as 
few nodes as possible.



DBT-2 (sneak peek)

● Like TPC-C

● Early results show 4.3 times scaling with 5 servers
– More details to come ... 



Thank you
ashutosh.bapat@enterprisedb.com
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