

Write-Scalable Shared-Nothing PostgreSQL Cluster

Dec 7, 2010 1

Today's Talk

• What is Postgres-XC?

– Concept and Ultimate Goal

• How to achieve read/write scalability

• Postgres-XC component

– Global Transaction Manager

– Coordinator

– Data Node

• Current Status and Evaluation

• Possible Applications

• Issues and Roadmap

Dec 7, 2010 2

What is Postgres-XC NOT?

• Not multi-master replication solution

• Not a read-balancing solution

• No native HA (yet)

Dec 7, 2010
3

What is Postgres-XC? (1)

• Write-scalable PostgreSQL cluster

– More than 3.4 performance scalability with five

servers, compared with pure PostgreSQL (DBT-1)

• Global multi-coordinator configuration

– Any update to any master is visible from other

masters immediately.

Dec 7, 2010
4

What is Postgres-XC? (2)

• Table location transparent

– Tables can be replicated or distributed

(partitioned or round robin)

– Can continue to use the same applications.

– No change in transaction handling.

• Based upon PostgreSQL

• Same API to Apps as PostgreSQL

Dec 7, 2010 5

Postgres-XC Applications

• Short transaction applications (DBT-1, DBT-2

etc.)

– Transactions can be executed in parallel in

multiple data nodes.

• Data warehouse (DBT-3 etc.)

– Statement can be divided into several pieces

executed in parallel in multiple data nodes.

• (Complex statement handling still very primitive)

Dec 7, 2010 6

/

7

Why Write-Scalability?

• Other solutions can achieve some scalability with replicated

read-only slaves, but does not help with writes

• Many applications could be write-traffic bottlenecked
– Blogs, Social Networks

– Mission critical systems like internet shopping site, telephone
customer billing, call information and securities trading

• Application has to deal with such write bottleneck using
multiple databases via sharding
– Not distribution‐transparent

– Possible consistency issues

• As applications grow
– It is desirable to make database distribution transparent for write

operations too.

Dec 7, 2010 8

Why Shared-Nothing?

• Most Cost-Efficient

• Flexible to deploy

– Can apply very simple to complicated cluster

configuration

Dec 7, 2010 9

How to Achieve Read/Write Scalability

• Parallelism

– Transactions run in parallel in database cluster

– A statement can run in parallel in database cluster
(future)

• Maintain Transaction Control

– Transaction Timestamp (Transaction ID)

–MVCC visibility

• Provide Global Values

– Sequence

– Timestamp

Dec 7, 2010 10

Development History

Dec 7, 2010 11

2010 March May2010 March July Oct

0.9 Basic Version

Single-step Statements

Distributed Transactions

0.9.1

COPY FROM/TO

Synch Update Replicated

Aggregate Functions

0.9.3

Coordinator Synchronization for DDL

Basic Cursors

Basic Cross-node Joins

Global Timestamps

JDBC/Extended Query Protocol support

2PC from Applications

Configuration Utility

0.9.2

pg_backup & pg_restore

Mutli-node ORDER BY & DISTINCT

Cold Coordinator Synchronization

Current Status and Plan

• Version 0.9.3 is available now

– http://sourceforge.net/projects/postgres-xc

• January 2011

– UPDATE/DELETE WHERE CURRENT OF

– Single-step Prepared Statements

– Join push down for cross node joins + only select

needed columns

– ANALYZE & snapshots

– INSERT SELECT

– COPY SELECT

– CLEAN CONNECTION for the pooler
Dec 7, 2010 12

Roadmap and Plan

• Beyond
– Point in Time Recovery

– Cross-node optimization
• Tuple transfer Infrastructure from

node to node

– More variety of SQL statements

– Multi-step Prepared Statement

– Expanded cursor support

– General Stored Functions

– Savepoint

– Session Parameters & Pooling

– High Availability

– Pooler improvements

– Trigger

– Global constraints

– Tuple relocation
• Distribution key update

– Performance improvements

– Regression Tests (to be
continued)

Dec 7, 2010 13

Concurrent Transaction Execution

Dec 7, 2010 14

SQL analyze

SQL

execution

Applications

Server 1 Server 2 Server 3

S
Q
L
1

S
Q
L
4

S
Q
L
2

S
Q
L
5

S
Q
L
3

S
Q
L
6

S
Q
L
1

S
Q
L
4

S
Q
L
2

S
Q
L
3

S
Q
L
5

S
Q
L
6

Postgres-XC Configuration

Dec 7, 2010 15

-

-

-

Application can connect to any server to have the same database view and service.

- - -

Postgres-XC Components

• GTM (Global Transaction Manager)
– Provide global transaction information to each transaction

• Transaction ID

• Snapshot

– Provide other global data to statements
• Sequence

• Time/Sysdate

• Coordinator
– Parse statements and determine location of involved data

– Transfer statements for each data node (if needed)

– Application Interface

• Data Node
– Stores actual data

– Execute statements from Coordinators

Dec 7, 2010 16

Tables in Postgres-XC

• Tables are replicated or distributed

– Replicated Table

• Each Data Node stores whole replicated table

• Replication is maintained synchronously per statement
basis (not WAL basis)

• Typically static data

– Distributed Table

• Each tuple is assigned a Data Node
– Based on a value of a column (distribution key)

» Hash

» Round‐Robin

» Range (future)

» User‐Defined (future)
Dec 7, 2010 17

How to Determine Distributed/Replicated?

• Transaction tables may be partitioned so that

each transaction can be executed in limited

number of data nodes.

• Static reference tables may be replicated so

that each transaction can read row values

locally.

Dec 7, 2010 18

GTM – Global Transaction Manager

December 7, 2010 19

XID Snapshots

ProcArray

GTM

XID Snapshots/

ProcArray

PostgreSQL

XID Snapshots/

ProcArray

PostgreSQLPostgreSQL

XID Snapshots/

ProcArray

GTM – Global Transaction Manager

• GTM is the key of Postgres-XC transaction
management

– Based on extracted transaction management from
PostgreSQL
• Unique Transaction ID (GXID, Global Transaction ID)

assignment,

• Gather transaction status from all the coordinators and
maintain snapshot data,

• Distributed MVCC (Multi-version Concurrency Control) to
provide a global snapshot for each statement

– Extract global value providing feature such as
• Sequence

• Time/sysdate (future)

December 7, 2010 20

GTM and PG-XC Transaction

Management

Dec 7, 2010 21

Coordinator

Data Node Data Node Data Node

GTM

・・・

App.

Global

Catalog

Local

Data
Local

Data

Local

Data

Statements
Results

Request/TX state

GXID, Global Snapshot

S t a
t e m

e n
t s
w i
t h
G X

I D

a n
d G

l o b
a l
S n
a p
s h
o t

S t
a t
e
m
e
n
t s
 w
i t
h
 G
X
I D

a n
d
 G
l o
b
a l
 S
n
a p
s h
o
t
Sta te m

e n ts w
i th G

X I D

a n d G
l ob

a l Sn a p sh
otL o

c a
l R
e s
u l
t

L
o
c
a
l
R
e
s u
l t

Lo
c a
l R
e
su
lt

L
o
c
a
l
R
e
s u
l t

GXID and Snapshot

Dec 7, 2010 22

• GXID
– Unique Transaction ID in the system

• Global Snapshot
– Includes snapshot information of transactions in other

coordinators.

• Data node can handle transactions from different
coordinators without consistency problem.

• Visibility is maintained as standalone PostgreSQL.

Outline of PG-XC Transaction Management

Dec 7, 2010 23

GTM Server 1 Server 2 Server 3

TXN1

TXN2 TXN3

TXN4

Begin

Begin

Begin

Snap (T1, T2, T3)

Snap (T1, T2, T3)

Commit

Snap (T2, T3)

Snap (T2, T3)

Begin

Snap (T2, T3, T4)

Commit

Snap (T2, T4)

Commit

Snap (T4)

• Depending on implementation
– Current Implementation

– Large snapshot size and number

– Too many interaction between GTM and Coordinators

Can GTM be a Performance Bottleneck?

Dec 7, 2010 24

Applicable up to

five PG-XC servers

(DBT-1)

Coordinators

Can GTM be a Performance Bottleneck?

Dec 7, 2010 25

• Proxy Implementation

• Very good potential
– Request/Response grouping

– Single representative snapshot applied to multiple transactions

• Maybe applicable for more than ten PG‐XC servers

Coordinators

Can GTM be a SPOF?

Dec 7, 2010 26

• Implement GTM standby

GTM Master GTM Standby

Checkpoint next starting

point (GXID and Sequence)

Standby can failover the

master without referring to

GTM master information.

Coordinator & Data Node Internals

Dec 7, 2010 27

Looking at Code

• Not (yet) overly invasive in PostgreSQL code

– 8.4.2 → 8.4.3 merged cleanly

• Existing modules use #ifdef PGXC to identify
Postgres-XC changes

• IS_PGXC_COORDINATOR and
IS_PGXC_DATANODE easily identifies applicable
code

• Advanced Coordinator logic & GTM in separate
modules

Dec 7, 2010 28

Reference Architecture

Dec 7, 2010 29

Coordinator Overview

• Based on PostgreSQL 8.4.3 (9.0 soon)

• Accepts connections from clients

• Parses requests

• Examines requests, reroutes to Data Nodes

• Interacts with Global Transaction Manager

• Uses pooler for Data Node connections

• Sends down XIDs and snapshots to Data Nodes

• Uses two phase commit if necessary

Dec 7, 2010 30

Data Node Overview

• Based on PostgreSQL 8.4.3 (9.0 soon)

• Where user created data is actually stored

• Coordinators (not clients) connects to Data
Nodes

• Accepts XID and snapshots from Coordinator

• Special autovacuum/analyze handling

• The rest is fairly similar to vanilla PostgreSQL

Dec 7, 2010 31

Postgres-XC Request Handling

• Data Distribution

• Pooler

• Statements

– Only involve nodes as needed

– Proxy efficiently

– If multiple nodes, issue query simultaneously

– Global MVCC

• Transactions

Dec 7, 2010 32

Data Distribution

Dec 7, 2010 33

Connection Pooling

• The Coordinator forks off a pooler process for
managing connections to the Data Nodes

• Coordinator obtains connections from pooler
process as needed

– Not every transaction needs all Data Nodes

• At commit time, Coordinator returns connections
to the pool

• As we add clients and multiple Coordinators, we
want to prevent an explosion of required
connections at the data node level by pooling
instead

Dec 7, 2010 34

Statement Handling

• Large coverage of SQL statements handled

– (cross-node joins inefficient)

• Use distribution information in Coordinator

• If more than one Data Node, send down
statement to all simultaneously

• Recognize singleton statements

• Recognize single-step statements

• Handle replicated tables

• Use two phase commit

– (and use only when necessary)

Dec 7, 2010 35

Statement Handling - Execution

Dec 7, 2010 36

Queries with Replicated Tables

• Choose a node via round robin to execute on

• Recognize queries with joins between replicated tables

SELECT *

 FROM reptab1 r1 INNER JOIN reptab2 r2

 ON r1.col1 = r2.col2

• For write operations

– All nodes

– Two phase commit

– Write on single “primary” data node first to avoid

deadlocks

Dec 7, 2010 37

Statement Handling - Execution

Dec 7, 2010 38

Statement Handling - Execution

Dec 7, 2010 39

Queries with Partitioned Tables

• Check WHERE clause to see if we can execute on one node

• Recognize queries with joins with replicated tables

SELECT *

 FROM tab1 t INNER JOIN reptab1 r

 ON t.col2 = r.col3

 WHERE t.col1 = 1234

• Recognize queries with joins on respective partitioned
columns

SELECT *

 FROM tab1 t1 INNER JOIN tab2 t2

 ON t1.col1 = t2.col1

 WHERE t.col1 = 1234
Dec 7, 2010 40

Visibility and Data Node Handling

• When the first statement of a transaction needs
to execute, a global XID is obtained from GTM

• Each time a new Data Node connection joins a
transaction, the Coordinator sends down a GXID
to the Data Node

• Each statement execution requires a new
snapshot being obtained from GTM

• Before sending down a SQL statement, the
Coordinator first passes down a snapshot to the
Data Nodes

Dec 7, 2010 41

Transactions and Data Node

Handling

• The Coordinator tracks read and write activity*

• At commit time

– If we have only written to one Data Node, we simply

issue commit to the node

– If we have written to more than one Data Node, we

use two phase commit

*Stored functions could theoretically write to DB

Dec 7, 2010 42

Transaction Handling Considerations

• Distributed transactions and two phase commit
(2PC)

• Distributed Multi-Version Concurrency Control

– Global Snapshots

– Autovacuum
• exclude XID in global snapshots

– ANALZYE

– Future optimization

– CLOG
• Careful when extending, not all transactions are on all nodes

Dec 7, 2010 43

Aggregate Handling

• Traditional PostgreSQL in Two Phases:

– Transition Function

– Finalizer Function

• Postgres-XC uses Three Phases:

– Transition Function

– Collector Function

– Finalizer Function

Dec 7, 2010 44

Aggregate Handling

Dec 7, 2010 45

Data Node
Relation

Aggregate

Transition

Data Node
Relation

Aggregate

Transition

Data Node
Relation

Aggregate

Transition
...

Coordinator

Aggregate Combination

Aggregate Finalize

Client

Postgres-XC Aggregate Flow

Aggregate Handling - AVG

• AVG (Average) needs to sum all elements and
divide by the count

• Transition
arg1[0]+=arg2;
arg1[1]++;
return arg1;

• Combiner (only in Postgres-XC)
arg1[0]+=arg2[0];
arg1[1]+=arg2[1];
return arg1;

• Finalizer
return arg1[0]/arg1[1];

Dec 7, 2010 46

Get the sum of the sums
and the sum of the counts
from the Data Nodes

UPDATE / DELETE

WHERE CURRENT OF cursor
• Partitioned Tables

– Fetch one row at a time, track source data node

– Pass UPDATE/DELETE WHERE CURRENT OF down to

the appropriate node

• Replicated Tables

– SELECT FOR UPDATE required

– Fetch from primary data node, along with CTID

– When WHERE CURRENT OF, fetch uniquely identifying

info for tuple, issue UPDATE/DELETE

Dec 7, 2010 47

INSERT SELECT

• Execute SELECT

• Send rows down to Data Nodes via COPY (FROM STDIN)

– Take into account if destination table is partitioned or

replicated

• Can be improved

– Data Node to Data Node communication

– Avoid extra conversions

Dec 7, 2010 48

Evaluation

Dec 7, 2010 49

Postgres-XC Performance Benchmark

• Based on DBT-1

– Typical Web-based benchmark

– We had good experience on this

• Changes from the original

– Changed ODBC to libpq
• Put much more workload

– Added distribution keys
• Can be automatically generated in the future

– One table divided into two
• According to the latest TPC-W specification

• Matches Postgres-XC characteristics

Dec 7, 2010 50

DBT-1-based Table Structure

Dec 7, 2010 51

C_ID

C_UNAME

C_PASSWD

C_FNAME

C_LNAME

C_ADDR_ID

C_PHONE

C_EMAIL

C_SINCE

C_LAST_VISIT

C_LOGIN

C_EXPIRATION

C_DISCOUNT

C_BALANCE

C_YTD_PMT

C_BIRTHDATE

C_DATA

ADDR_ID

ADDR_STREET1

ADDR_STREET2

ADDR_CITY

ADDR_STATE

ADDR_ZIP

ADDR_CO_ID

ADDR_C_ID

O_ID

O_C_ID

O_DATE

O_SUB_TOTAL

O_TAX

O_TOTAL

O_SHIP_TYPE

O_BILL_ADDR_ID

O_SHIP_ADDR_ID

O_STATUS

CUSTOMER

ADDRESS

ORDERS

OL_ID

OL_O_ID

OL_I_ID

OL_QTY

OL_DISCOUNT

OL_COMMENTS

OL_C_ID

ORDER_LINE

I_ID

I_TITLE

I_A_ID

I_PUB_DATE

I_PUBLISHER

I_SUBJECT

I_DESC

I_RELATED1

I_RELATED2

I_RELATED3

I_RELATED4

I_RELATED5

I_THUMBNAIL

I_IMAGE

I_SRP

I_COST

I_AVAIL

I_ISBN

I_PAGE

I_BACKING

I_DIMENASIONS

ITEM

CX_I_ID

CX_TYPE

CX_NUM

CX_NAME

CX_EXPIRY

CX_AUTH_ID

CX_XACT_AMT

CX_XACT_DATE

CX_CO_ID

CX_C_ID

CC_XACTS

OL_ID

OL_O_ID

OL_I_ID

OL_QTY

OL_DISCOUNT

OL_COMMENTS

OL_C_ID

AUTHOR

ST_I_ID

ST_STOCK

STOCK

SC_ID

SC_C_ID

SC_DATE

SC_SUB_TOTAL

SC_TAX

SC_SHIPPING_COST

SC_TOTAL

SC_C_FNAME

SC_C_LNAME

SC_C>DISCOUNT

SHOPPING_CART

SCL_SC_ID

SCL_I_ID

SCL_QTY

SCL_COST

SCL_SRP

SCL_TITLE

SCL_BACKING

SCL_C_ID

SHOPPING_CART_LINE

CO_ID

CO_NAME

CO_EXCHANGE

CO_CURRENCY

COUNTRY

Distributed with

Customer ID

Replicated

Distributed with

ItemID

Distributed with

Shopping Cart ID

Evaluation Environment

Dec 7, 2010 52

Network Segment-

1(1Gbps)

Network Segment-2 (1Gbps)

External Network
Loader

Coordinator/

Data Node
GTM

Infiniband(10Gbps) … Not really used.

Server Spec

Dec 7, 2010 53

Coordinator/Data Node GTM/Loader

Make HP Proliant DL360 G6 HP Proliant DL360 G5

CPU Intel® Xeon® E5504

2.00GHz x 4

Intel® Xeon® X5460

3.16GHz x 4

Cache 4MB 6MB

MEM 12GB 6GB

HDD 146GB SAS 15krpm x 4 ea 146GP SAS 15krpm x 2 ea

Evaluation Summary

Database Num. of Servers Throughput (TPS) Scale Factor

PostgreSQL 1 2,617 1.0

Postgres-XC 1 1,869 0.71

Postgres-XC 2 3,646 1.39

Postgres-XC 3 5,379 2.06

Postgres-XC 5 8,473 3.24

Postgres-XC 10 15,380 5.88

Dec 7, 2010 54

Full Load Throughput

Scale Factor Summary

Dec 7, 2010 55

 1 2 3 4 5 6 7 8 9 10

0

1

2

 3

 4

 5

 6

 7

 8

9

Number of Servers

S
c
a

le
 F

a
c
to

r

I d
e
a
l

O b
s e
rv e

d

Network Workload

Dec 7, 2010 56

1

1 2 3 4

2 9

L

/

L

9.9 /s

.3 /s

.3 /s

.5 /s

3.3 /s

1.7 /s

.9 /s

.3 /s

/s

/s

/s

/s

One Week Test

Dec 7, 2010 57

Reasonably stable in a long run (90% workload)
Vaccum Analyze may become

long transactions to affect the

throughput.

0

900180

360

540

720 1080

1260

1440

1620

1800

1980

2160

2340

2520

2700

2880

3060

3240

3420

3600

3780

3960

4140

4320

4500

4680

4860

5040

5220

5400

5580

5760

5940

6120

6300

6480

6660

6840

7020

7200

7380

7560

7740

7920

8100

8280

8460

8640

8820

9000

9180

9360

9540

9720

9900

10080

5000

5200

5400

5600

5800

6000

6200

6400

6600

0

900180

360

540

720 1080

1260

1440

1620

1800

1980

2160

2340

2520

2700

2880

3060

3240

3420

3600

3780

3960

4140

4320

4500

4680

4860

5040

5220

5400

5580

5760

5940

6120

6300

6480

6660

6840

7020

7200

7380

7560

7740

7920

8100

8280

8460

8640

8820

9000

9180

9360

9540

9720

9900

10080

0

1000

2000

3000

4000

5000

6000

7000

Zoom:

Avoiding Long Transactions

• Vacuum

– Needs GXID

– Vacuum's GXID need not to appear in local or

global snapshot

• Vacuum Analyze

– Needs GXID

– GXID should appear in local snapshot

– GXID need not appear in global snapshot (January

2011)

Dec 7, 2010 58

Evaluation Summary

• PG-XC is reasonably scalable in both

read/write.

• Need some tweaking to stabilize the

performance.

• Network workload is reasonable.

– GTM Proxy works well

–More work is needed to accommodate more

servers (thirty or more)

• Fundamentals are established

–Will continue to extend statement support
Dec 7, 2010 59

Possible Use Case (1)

Dec 7, 2010 60

-

-

-

Application can connect to any server to have the same database view and service.

- - -

Large Scale Application

Possible Use Case (2)

Dec 7, 2010 61

Multi-Application

Integration

App-1

App-2

App-3

App-1

App-2

App-3

App-1

App-2

App-3

App-1

App-2

App-3

Application

Database

Server1

Server2

Server3

Possible Use Case (3)

Dec 7, 2010 62

Dynamic Resizing

(Cloud)

Co/DN-1

Co/DN-2

Co/DN-3

Co/DN-4

Co/DN-1

Co/DN-2

Co/DN-3

Co/DN-4

Co/DN-1

Co/DN-2

Co/DN-3

Co/DN-4

One server

Two

servers

Four servers

Developers Welcome

• We welcome people to help the project

– Each issue in WIP and the roadmap is composed

of small manageable pieces.

– If you are interested in the project, please contact

us.

• Project Home Page

http://postgres-xc.sourceforge.net/

• Contact

Dec 7, 2010 63

Thank You Very Much

Dec 7, 2010 64

