

Multi-CPU performance in PostgreSQL 9.2

Heikki Linnakangas / EnterpriseDB

Scalability 101

● Scalability defined:
● when you throw more hardware at a problem,

the software can make use of it
● This presentation focuses on multi-CPU

scalability

Multi-CPU systems today

● Even laptops typically have 2 cores
● Servers

● Low-end: 4 cores
● High-end: 32 cores and beyond

● RAM:
● > 128 GB

Journey begins: Itanium test box

machinfo

CPU info:

 8 Intel(R) Itanium(R) Processor 9350s (1.73 GHz, 24 MB)

 4.79 GT/s QPI, CPU version E0

 32 logical processors (4 per socket)

Memory: 392917 MB (383.71 GB)

...

Platform info:

 Model: "ia64 hp Integrity BL890c i2"

Making software to scale

1. Benchmark

2. Identify bottleneck

3. Fix bottlenck

Choosing the benchmark

● There are workloads where PostgreSQL scales
great
● SELECTs, bundled into large transactions
● > 64 CPUs, no problem!

● On other workloads, PostgreSQL scales poorly
● Concurrent inserts choke at 2 CPUs

COPY

● Bulk loading data with COPY has always
scaled well
● unless it needs to be WAL-logged

– Which is most of the time

COPY, solved

commit d326d9e8ea1d690cf6d968000efaa5121206d231

Author: Heikki Linnakangas <heikki.linnakangas@iki.fi>

Date: Wed Nov 9 10:54:41 2011 +0200

 In COPY, insert tuples to the heap in batches.

 This greatly reduces the WAL volume, especially when the table is narrow.

 The overhead of locking the heap page is also reduced. Reduced WAL

 traffic also makes it scale a lot better, if you run multiple COPY processes at

 the same time.

Impact

● Makes bulk loading scale
● Reduces WAL volume
● Caveats:

● Optimization does not apply if there are
BEFORE/AFTER triggers or volatile DEFAULT
expressions

● When loading into a single table, extending the file
becomes bottleneck

Next workload: SELECTs

● I said SELECTs already scale well
● But in 9.1, only if you SELECTed different tables
● PostgreSQL lock manager is partitioned
● But when all backends hit the same table, that

doesn't help, and the lock manager became a
bottleneck

Lock manager, solved

commit 3cba8999b343648c4c528432ab3d51400194e93b

Author: Robert Haas <rhaas@postgresql.org>

Date: Sat May 28 19:52:00 2011 -0400

 Create a "fast path" for acquiring weak relation locks.

 When an AccessShareLock, RowShareLock, or RowExclusiveLock is requested

 on an unshared database relation, and we can verify that no conflicting

 locks can possibly be present, record the lock in a per-backend queue,

 stored within the PGPROC, rather than in the primary lock table. This

 eliminates a great deal of contention on the lock manager LWLocks.

 ...

 Review by Jeff Davis.

Impact

”Here are the results of alternating runs without

and with the patch on that machine:

tps = 36291.996228 (including connections establishing)

tps = 129242.054578 (including connections establishing)

tps = 36704.393055 (including connections establishing)

tps = 128998.648106 (including connections establishing)

tps = 36531.208898 (including connections establishing)

tps = 131341.367344 (including connections establishing)

That's an improvement of about ~3.5x. According to the vmstat output,

when running without the patch, the CPU state was about 40% idle.

With the patch, it dropped down to around 6%.

- Robert Haas, 3 Jun 2011

SELECTs continued: ProcArrayLock

● Each session has an entry in shared memory,
in the ”proc array”

● The proc array is protected by a lock called
ProcArrayLock

● It is acquired in shared mode whenever a
snapshot is taken (~= at the beginning of each
transaction)

● It is acquired in exclusive mode whenever a
transaction commits

ProcArrayLock

● Becomes a bottleneck at high transaction rates
● A problem with OLTP workloads with a lot of small

transactions
● Not a problem with larger transactions that do more

stuff per transaction

commit b4fbe392f8ff6ff1a66b488eb7197eef9e1770a4

Author: Robert Haas <rhaas@postgresql.org>

Date: Fri Jul 29 16:46:13 2011 -0400

 Reduce sinval synchronization overhead.

 Testing shows that the overhead of acquiring and releasing

 SInvalReadLock and msgNumLock on high-core count boxes can waste a lot

 of CPU time and hurt performance. This patch adds a per-backend flag

 that allows us to skip all that locking in most cases. Further

 testing shows that this improves performance even when sinval traffic

 is very high.

 Patch by me. Review and testing by Noah Misch.

commit 84e37126770dd6de903dad88ce150a49b63b5ef9

Author: Robert Haas <rhaas@postgresql.org>

Date: Thu Aug 4 12:38:33 2011 -0400

 Create VXID locks "lazily" in the main lock table.

 Instead of entering them on transaction startup, we materialize them

 only when someone wants to wait, which will occur only during CREATE

 INDEX CONCURRENTLY. In Hot Standby mode, the startup process must also

 be able to probe for conflicting VXID locks, but the lock need never be

 fully materialized, because the startup process does not use the normal

 lock wait mechanism. Since most VXID locks never need to touch the

 lock manager partition locks, this can significantly reduce blocking

 contention on read-heavy workloads.

 Patch by me. Review by Jeff Davis.

spinlocks

commit c01c25fbe525869fa81237954727e1eb4b7d4a14

Author: Robert Haas <rhaas@postgresql.org>

Date: Mon Aug 29 10:05:48 2011 -0400

 Improve spinlock performance for HP-UX, ia64, non-gcc.

 At least on this architecture, it's very important to spin on a

 non-atomic instruction and only retry the atomic once it appears

 that it will succeed. To fix this, split TAS() into two macros:

 TAS(), for trying to grab the lock the first time, and TAS_SPIN(),

 for spinning until we get it. TAS_SPIN() defaults to same as TAS(),

 but we can override it when we know there's a better way.

 It's likely that some of the other cases in s_lock.h require

 similar treatment, but this is the only one we've got conclusive

 evidence for at present.

commit ed0b409d22346b1b027a4c2099ca66984d94b6dd

Author: Robert Haas <rhaas@postgresql.org>

Date: Fri Nov 25 08:02:10 2011 -0500

 Move "hot" members of PGPROC into a separate PGXACT array.

 This speeds up snapshot-taking and reduces ProcArrayLock contention.

 Also, the PGPROC (and PGXACT) structures used by two-phase commit are

 now allocated as part of the main array, rather than in a separate

 array, and we keep ProcArray sorted in pointer order. These changes

 are intended to minimize the number of cache lines that must be pulled

 in to take a snapshot, and testing shows a substantial increase in

 performance on both read and write workloads at high concurrencies.

 Pavan Deolasee, Heikki Linnakangas, Robert Haas

commit 0d76b60db4684d3487223b003833828fe9655fe2

Author: Robert Haas <rhaas@postgresql.org>

Date: Fri Dec 16 21:44:26 2011 -0500

 Various micro-optimizations for GetSnapshopData().

 Heikki Linnakangas had the idea of rearranging GetSnapshotData to

 avoid checking for sub-XIDs when no top-level XID is present. This

 patch does that plus further a bit of further, related rearrangement.

 Benchmarking show a significant improvement on unlogged tables at

 higher concurrency levels, and mostly indifferent result on permanent

 tables (which are presumably bottlenecked elsewhere). Most of the

 benefit seems to come from using the new NormalTransactionIdPrecedes()

 macro rather than the function call TransactionIdPrecedes().

commit d573e239f03506920938bf0be56c868d9c3416da

Author: Robert Haas <rhaas@postgresql.org>

Date: Wed Dec 21 09:16:55 2011 -0500

 Take fewer snapshots.

 When a PORTAL_ONE_SELECT query is executed, we can opportunistically

 reuse the parse/plan shot for the execution phase. This cuts down the

 number of snapshots per simple query from 2 to 1 for the simple

 protocol, and 3 to 2 for the extended protocol. Since we are only

 reusing a snapshot taken early in the processing of the same protocol

 message, the change shouldn't be user-visible, except that the remote

 possibility of the planning and execution snapshots being different is

 eliminated.

 ...

 Patch by me; review by Dimitri Fontaine.

Next bottleneck

”So I have a new theory: on permanent

tables, *anything* that reduces ProcArrayLock
contention causes an approximately equal
increase in WALInsertLock contention (or maybe
some other lock), and in some cases that
increase in contention elsewhere can cost more
than the amount we're saving here.”

- Robert Haas, 15 Dec 2011

Next workload: read/write

● Reran pgbench, now with writes
● Excluding branch-table updates, to avoid

bottlenecking on the application level

WALInsertLock

● Remember the COPY problem?
● The patch to solve that was a special hack

targeting just COPY.
● The problem remains for all other

inserts/updates/deletes

Profiling

● HP-UX has a nice tool called caliper

● Like oprofile, but can include wait times too

 34.62 postgres::ProcArrayEndTransaction [51]

 30.77 postgres::XLogInsert [49]

 11.54 postgres::LockBuffer [113]

 7.69 postgres::TransactionIdSetPageStatus [146]

 7.69 postgres::BufferAlloc [72]

 7.69 postgres::GetSnapshotData [246]

[25] 13.6 1.1 12.5 3.85
postgres::LWLockAcquire

 69.23 postgres::PGSemaphoreLock [38]

 26.92 postgres::s_lock [60]

Summary

● 9.2 scales much better for many common
workloads!

● Future focus
● Serializable transactions
● WAL-logging

● Thanks to
● Nathan boley, for lending a server for benchmarking
● Greg Smith, for creating pgbench-tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

