Understanding PostgreSQL timelines
Heikki Linnakangas / VMware

Point-in-Time Recovery

DELETE FROM accounts <enter>
- Oops!
Kill server

Restore from backup. Try to recover up to just
before the DELETE

Oops, went too far

Restore again from backup, try to recover to
correct location

Timelines

 Introduced with Point-in-Time-Recovery in
version 8.0

* Every time you do PITR, a new timeline Is
formed

* This helps you to differentiate WAL generated
from different PITR attempts

Timeline In a single server

e Boring

Timeline In a single server

checkpoint ~ 'NSERT.... UPDATE ..

[

A/10000000 A/15000000 A/20000000

| =

WAL positions

Point-in-Time Recovery

 When new WAL Is genereated after PITR, you
don't want to overwrite the old WAL.

TLI 3

TLI 2

TLI 1

Backup DELETE FROM accounts

Timeline ID

/ A/1500000 on timeline 2

A/1500000 on timeline 1

A/10000000 A/15000000 A/20000000

Timelines

* Looking back from any point in time, the
history is linear

TLI 3

A/15000000 A/20000000

TLI 1

DELETE FROM accounts

A/10000000

WAL archive

0000000100000013000000E1
0000000100000013000000E2
0000000100000013000000E3
0000000100000013000000E4
0000000100000013000000E5
0000000200000013000000E3
0000000200000013000000E4
0000000200000013000000E5

WAL archive

0000000100000013000000E1
0000000100000013000000E2
0000000100000013000000E3
0000000100000013000000E4
0000000100000013000000E5

000000
000000
000000

0000013000000E3
0000013000000E4
0000013000000E5

What happens at a end of recovery?

* End of recovery means the point where the
the database opens up for writing

 New timeline Is chosen
* Atimeline history file is written

* The partial last WAL file on the previous
timeline is copied with the new timeline's ID

* A checkpoint record is written on the new
timeline

LOG:

Example: End of recovery

database system was interrupted; last known up at 2013-01-30

21:45:14 EET

LOG:
LOG:
LOG:

starting archive recovery
redo starts at 13/E00000CS8
could not open file "pg_xlog/0000000100000013000000E4": No

such file or directory

LOG:
LOG:
LOG:
LOG:
LOG:

redo done at 13/E3D389A0

last completed transaction was at log time 2013-01-30 21:45:20+02
selected new timeline ID: 2

archive recovery complete

database system is ready to accept connections

First WAL file with new timeline

0000000100000013000000E4

Unused portion

0000000200000013000000E4

\

Common part New WAL on timeline 2

Timeline history file

0000000100000013000000E1
0000000100000013000000E2
0000000100000013000000E3
0000000100000013000000E4
0000000100000013000000E5
00000002.history

0000000200000013000000E3
0000000200000013000000E4
0000000200000013000000E5

Timeline history file

$ cat data-standby1/pg_xlog/00000003.history

1 13/E4000000 no recovery target specified
2 13/ED000090 at restore point "before FOSDEM”

o Reason for the timeline switch
Point iIn WAL where

new timeline begins
Timeline ID

But | don't do PITR!

e Are you sure?
* Do you have a standby?

Promoting a standby

Master
crashes

——

Standby is promoted.
Creates new timeline

In reality, it's more like PITR

2. Standby is promoted.
Creates new timeline

1, Master
| crashes

Lost updates

But | use synchronous replication

Doesn't matter

In synchronous replication, commits are not
acknowledged to the client until the commit
record is replicated

It's still written to disk In the master first

Even if you don't lose any commits, other WAL
records are not synchronous (that would
totally kill performance)

Ok, sol do PITR

e Embrace the timelines

Upcoming 9.3 enhancements

« Streaming replication can follow a timeline
switch

- Previously you needed a WAL archive for that
* pg_receivexlog can follow a timeline switch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

