

Understanding PostgreSQL timelines
Heikki Linnakangas / VMware

Point-in-Time Recovery

● DELETE FROM accounts <enter>
– Oops!

● Kill server
● Restore from backup. Try to recover up to just

before the DELETE
● Oops, went too far
● Restore again from backup, try to recover to

correct location

Timelines

● Introduced with Point-in-Time-Recovery in
version 8.0

● Every time you do PITR, a new timeline is
formed

● This helps you to differentiate WAL generated
from different PITR attempts

Timeline in a single server

● Boring

Timeline in a single server

A/20000000A/15000000A/10000000

WAL positions

checkpoint INSERT ... UPDATE ...

Point-in-Time Recovery

● When new WAL is genereated after PITR, you
don't want to overwrite the old WAL.

TLI 2

TLI 1

DELETE FROM accounts

TLI 3

Backup

Timeline ID

A/20000000A/15000000A/10000000

A/1500000 on timeline 2

A/1500000 on timeline 1

Timelines

● Looking back from any point in time, the
history is linear

TLI 2

TLI 1

DELETE FROM accounts

TLI 3

A/20000000A/15000000

A/10000000

WAL archive

0000000100000013000000E1

0000000100000013000000E2

0000000100000013000000E3

0000000100000013000000E4

0000000100000013000000E5

0000000200000013000000E3

0000000200000013000000E4

0000000200000013000000E5

WAL archive

0000000100000013000000E1

0000000100000013000000E2

0000000100000013000000E3

0000000100000013000000E4

0000000100000013000000E5

0000000200000013000000E3

0000000200000013000000E4

0000000200000013000000E5

What happens at a end of recovery?

● End of recovery means the point where the
the database opens up for writing

● New timeline is chosen
● A timeline history file is written
● The partial last WAL file on the previous

timeline is copied with the new timeline's ID
● A checkpoint record is written on the new

timeline

Example: End of recovery

LOG: database system was interrupted; last known up at 2013-01-30
21:45:14 EET

LOG: starting archive recovery

LOG: redo starts at 13/E00000C8

LOG: could not open file "pg_xlog/0000000100000013000000E4": No
such file or directory

LOG: redo done at 13/E3D389A0

LOG: last completed transaction was at log time 2013-01-30 21:45:20+02

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: database system is ready to accept connections

First WAL file with new timeline

0000000100000013000000E4

0000000200000013000000E4

Common part New WAL on timeline 2

Unused portion

Timeline history file

0000000100000013000000E1

0000000100000013000000E2

0000000100000013000000E3

0000000100000013000000E4

0000000100000013000000E5

00000002.history

0000000200000013000000E3

0000000200000013000000E4

0000000200000013000000E5

Timeline history file

$ cat data-standby1/pg_xlog/00000003.history

1 13/E4000000 no recovery target specified

2 13/ED000090 at restore point ”before FOSDEM”

Timeline ID

Point in WAL where
new timeline begins

Reason for the timeline switch

But I don't do PITR!

● Are you sure?
● Do you have a standby?

Promoting a standby

Master
crashes

Standby is promoted.
Creates new timeline

In reality, it's more like PITR

1, Master
crashes

2. Standby is promoted.
Creates new timeline

Lost updates

But I use synchronous replication

● Doesn't matter
● In synchronous replication, commits are not

acknowledged to the client until the commit
record is replicated

● It's still written to disk in the master first
● Even if you don't lose any commits, other WAL

records are not synchronous (that would
totally kill performance)

Ok, so I do PITR

● Embrace the timelines

Upcoming 9.3 enhancements

● Streaming replication can follow a timeline
switch
– Previously you needed a WAL archive for that

● pg_receivexlog can follow a timeline switch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

