Do More With Postgres!

Flexible
schemas:) Less complexity
Faster in your data
development ENTERPRISEDB environment
cycles
Document,
key-value, and Data Integrity
relational in one without silos
database

NoSQL On ACID

Let’'s Ask Ourselves, Why NoSQL?

* Where did NoSQL cone fronf
— Where all cool tech stuff comes from — Internet companies

* Wiy did they make NoSQL?
— To support huge data volumes and evolving demands for ways to
work with new data types
* What does NoSQL acconplish?

— Enables you to work with new data types: email, mobile interactions,
machine data, social connections

— Enables you to work in new ways: incremental development and
continuous release
* Wiy did they have to build sonethi ng new?
— There were limitations to most relational databases

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDB

NoSQL: Real-world Applications

* Energency Managenent System
— High variability among data sources required high schema flexibility

* Massively Open Online Course
— Massive read scalability, content integration, low latency

* Patient Data and Prescription Records
— Efficient write scalability

 Social Marketing Anal ytics
— Map reduce analytical approaches

Source: Gartner, A Tour of NoSQL in 8 Use Cases,
by Nick Heudecker and Merv Adrian, February 28, 2014

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 3 ENTERPRISEDB

Postgres’ Response

 HSTORE
— Key-value pair
— Simple, fast and easy -
— Postgres v 8.2 — pre-dates many NoSQL-only solutions
— ldeal for flat data structures that are sparsely populated

« JSON
— Hierarchical document model
— Introduced in Postgres 9.2, perfected in 9.3

 JSONB
— Binary version of JSON
— Faster, more operators and even more robust

— Postgres 9.4

tD

© 2014 EnterpriseDB Corporation. All rights reserved. 4 ENTERPRISEDB

Postgres: Key-value Store

* Supported since 2006, the HStore
contrib nodul e enabl es storing
key/value pairs within a single
col umm

* Allows you to create a schena-| ess,
ACI D conpliant data store wthin
Post gres

* Create single HStore column and
include, for each row, only those keys
which pertain to the record

* Add attributes to a table and query
without advance planning

*Combines flexibility with ACID compliance

-

D

5 ENTERPRISEDB

© 2014 EnterpriseDB Corporation. All rights reserved.

HSTORE Examples

* Create a table with HSTORE field
CREATE TABLE hstore data (data HSTORE);

° Insert a record into hstore data
| NSERT | NTO hstore data (data) VALUES (’
"cost " =>"500",
"product " =>"i phone",
"provi der"=>"apple"");

* Select data from hstore data
SELECT data FROM hstore data ;

"cost"=>"500", "product"=>"1 phone”, "provi der" =>" Appl e"
(1 row)

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 6 ENTERPRISEDB

Postgres: Document Store

* JSON is the nost popul ar
dat a-i nterchange format on the web

* Derived fromthe ECMAScri pt
Programm ng Language Standard
(Eur opean Conputer Manufacturers
Associ ati on).

* Supported by virtually every
programm ng | anguage

* New supporting technol ogi es
continue to expand JSON s utility

— PL/V8 JavaScript extension
— Node.js

* Postgres has a native JSON data type (v9.2) and a JSON parser
and a variety of JSON functions (v9. 3)

* Postgres wll have a JSONB data type with binary storage and
| ndexi ng (com ng — v9.4)

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 7 ENTERPRISEDB

Why JSON

Wherever is JAVA Script. especially Browser.

Most of Languages Support it.

Node. Js i s becom ng popul ar.

Li ghter and nore conpact than XM..

Most application don't need richer structure |ike XM.
Fl exi bl e Structure.

Due to its flexible Structure, good data type for
NoSQL.

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 8 ENTERPRISEDB

JSON Examples

* Creating a table with a JSO\B field
CREATE TABLE json_data (data JSONB);

* Sinple JSON data el enent:
{"nanme": "Apple Phone", "type": "phone", "brand":
"ACMVE", "price": 200, "available": true,
"warranty years": 1}
* Inserting this data elenent into the table json_data
| NSERT | NTO j son_data (data) VALUES
(' {"name": " Apple Phone",
"type": "phone",
"brand": "ACME",
"price": 200,
“avail abl e": true,
"warranty years": 1

}o)s

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 9 ENTERPRISEDB

JSON Examples

* JSON data el enent wth nesting:

{"full nanme":

"nanes":

[

~ P

"type":
"type":
"type":
"type":

"John Joseph Carl Sal

“firstname", "val ue":
“m ddl enanme", "val ue":
"m ddl ename"”, "val ue":
"l ast name", "val ue":

© 2014 EnterpriseDB Corporation. All rights reserved. 10

| nger",

"\]Ohn"},
"Joseph"},
llCarI ll}’

"Sal i nger"}

-

D

ENTERPRISEDB

A simple query for JSON data

SELECT DI STI NCT
dat a- >>' nane' as products
FROM j son_dat a;

products
Cabl e TV Basic Service Package
AC3 Case Bl ack
Phone Service Basic Plan
AC3 Phone
AC3 Case G een
Phone Service Fam |y Pl an
AC3 Case Red
AC7 Phone

© 2014 EnterpriseDB Corporation. All rights reserved. 11

This query does not
return JSON data — it
returns text values
associated with the
key ‘'name’

-

D

ENTERPRISEDB

A query that returns JSON data

SELECT data FROM j son_dat a;

dat a

{"nanme": "Apple Phone", "type": "phone", "brand":
"ACVE", "price": 200, "available": true,
"warranty years": 1}

This query returns the JSON data in its
original format

D

© 2014 EnterpriseDB Corporation. All rights reserved. 12 ENTERPRISEDB

JSON is defined per RFC — 7159
For more detail please refer

JSON Data TypeS http://tools.ietf.org/html/rfc7159

* 1. Nunber:

— Signed decimal number that may contain a fractional part and may use exponential notation.
— No distinction between integer and floating-point

e 2. String
— A sequence of zero or more Unicode characters.
— Strings are delimited with double-quotation mark
— Supports a backslash escaping syntax.

* 3. Bool ean
— Either of the values true or false.

* 4. Array
— An ordered list of zero or more values,
— [Each values may be of any type.
— Arrays use square bracket notation with elements being comma-separated.

* 5. (nject
— An unordered associative array (name/value pairs).
— Objects are delimited with curly brackets
— Commas to separate each pair
— [Each pair the colon "' character separates the key or name from its value.
— All keys must be strings and should be distinct from each other within that object.

* 6. null
— An empty value, using the word null

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 13 ENTERPRISEDB

TISON Data Type Example

"firstName": "John", -—- String Type
"lastName": "Smith", -—- String Type
"isAlive": true, -— Boolean Type
"age": 25, —-— Number Type
"height cm": 167.6, —— Number Type
"address": { -—- Object Type
"streetAddress": "21 2nd Street”,
"city": "New York”,
"State": "NYII,
"postalCode": "10021-3100"
}
"phoneNumbers": [-—- Object Array
{ -—- Object
"type": "homeII,
"number": "212 555-1234"
by
{
"type": "office”,
"number": "646 555-4567"
}
1y
"children": [],
"spouse": null —-— Null

© 2014 EnterpriseDB Corporation. All rights reserved.

14

D

ENTERPRISEDB

H story of JSON I n PostgreSQL

© 2014 EnterpriseDB Corporation. All rights reserved. s ENTERPRISEDB

History: JSON — Before 9.2

JSON coul d only be stored as sinple text.
Did not have structure Validation.
Did not have Supported functions/operated

Application had to do nost of work for
— Validation
— Verification
— Extraction

© 2014 EnterpriseDB Corporation. All rights reserved. 16

cD

ENTERPRISEDB

History: JSON — In 9.2

New data type JSON.
Data can al so be stored as text.
Val i date stored value is valid JSON.

Proved foll ow ng two supported functions:
— array_to _json(anyarray [, pretty bool])
- row to json(record [, pretty bool])

M ssing feature:
— JSON processing was missing
— User has to use PLV8, PLPerl etc..

D

© 2014 EnterpriseDB Corporation. All rights reserved. 17 ENTERPRISEDB

History: JSON - In 9.3

Add operators and functions to extract elenents from
JSON val ues

— Allow JSON values to be converted into records.
— Add functions to convert scalars, records, and hstore values to JSON

Functions honour casts to JSON for non built-in types.

New functions for HSTORE to JSON
— hstore to_json(hstore)
— hstore to json_ | oose(hstore).

Par ser exposed for use by other nodul es such as
ext ensi ons as an API.

tD

© 2014 EnterpriseDB Corporation. All rights reserved. 18 ENTERPRISEDB

Operators and Functions

* extraction operators:
- -> fetch an array element or object member as json
— json arrays are 0 based, unlike SQL arrays
- '[4,5,6]"::]son->2 = 6
- '{"a":1,"b":2}'::json->'b' = 2
* 9.3 extraction operators:
— ->> fetch an array element or object member as text
- '["a","b","c"]"'::json->2 = ¢
— Instead of "c"

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 19 ENTERPRISEDB

Operators and Functions

* JSON Extraction Functions:
— json_extract path(json, VARIADIC path elens text[]);

— Json_extract_path_text(json, VAR ADI C path_el ens
text[]);

* Sane as #> and #>> operators, but you can pass the path
as a variadic array

° json_extract _path('{"a":[6,7,8]}','a",'1") =7

tD

© 2014 EnterpriseDB Corporation. All rights reserved. 20 ENTERPRISEDB

Operators and Functions

9.3 turn JSON i nto records:

CREATE TYPE x AS (a int, b int);

SELECT * FROM j son_popul ate_record(null:: x,
‘{"a":1,"b":2}', false);

SELECT * FROM
json_popul ate recordset(null::x,"'[{"a":1," b":2},
{"a":3,"b":4}]"', false);

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 21 ENTERPRISEDB

Operators and Functions

* 9.3 turn JSON into key/val ue pairs
e SELECT * FROM json_each('{"a":1,"b":"fo0"}")
e SELECT * FROM json_each text('{"a":1,"b":"foo0"}")

* Deliver colums naned “key” and “val ue”

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 22 ENTERPRISEDB

Operators and Functions

9.3 get keys from JSON obj ect:

SELECT * FROM
j son_object keys('{"a":1,"b":"foo0"}")

9.3 JSON array processing:

SELECT json_array length('[1,2,3,4]");
SELECT * FROM json_array elenments('[1, 2, 3,4]")

© 2014 EnterpriseDB Corporation. All rights reserved. 23

DB

ENTERPRISEDB

JSON 9.4 — New Operators and Functions

 JSON
— New JSON creation functions (json_build_object, json_build _array)
— json_typeof — returns text data type (‘number’, ‘boolean’, ...)

* JSONB data type

— Canonical representation

— Whitespace and punctuation dissolved away

— Only one value per object key is kept

— Last insert wins

— Key order determined by length, then bytewise comparison
— Equality, containment and key/element presence tests
— New JSONB creation functions
— Smaller, faster GIN indexes

— jsonb subdocument indexes

— Use “get” operators to construct expression indexes on subdocument:

— CREATE INDEX author index ON books USING GIN ((jsondata ->
'authors'));

— SELECT * FROM books WHERE jsondata -> 'authors' ? 'Carl
Bernstein' -

D

© 2014 EnterpriseDB Corporation. All rights reserved. 24 ENTERPRISEDB

9.4 Features Set:

New j son creation functions
New utility functions
j sonb type

Ef ficient operations |Indexable Canoni cal

© 2014 EnterpriseDB Corporation. All rights reserved. 25

cD

ENTERPRISEDB

9.4 Features — new json aggregate

°* json_object _agg(“any”, “any”)

Turn a set of key value pairs into a json object

 SELECT j son_object _agg(nanme, population) from
cities;

- { “Smallville”: 300, “Metropolis”: 1000000}

© 2014 EnterpriseDB Corporation. All rights reserved. 26 ENTERPRISEDB

9.4 Features — json creation functions

json_build object(VAR ADI C “any”)
json_build array(VARI ADI C “any”)
j son_object(text[])

j son_obj ect (keys text[], values text[])

© 2014 EnterpriseDB Corporation. All rights reserved. 27

DB

ENTERPRISEDB

9.4 Features — json creation functions
(Examples)

 SELECT json build object('a',1,'b',true)

- {“a”: 1, “b”: true}

SELECT json build array('a',1,'b',true)

- [“a’, 1, “b”, true]

SELECT json_object(array['a','b','c',"'d"]

Or SELECT json_object(array[['a","'b"'],['c',"'d]]

O SELECT
json_object(array['a','c'],array['b',"'d"])
- {*a”":"b", “c’:"d"}

© 2014 EnterpriseDB Corporation. All rights reserved. 28

9.4 features — json_typeof

* json_typeof(json) returns text Result is one of:
- 'obj ect’
— ‘array’
- 'string’
- '"nunber’
— ' bool ean’
- 'nul |’
= Null

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 29 ENTERPRISEDB

9.4 features — jsonb type

Accepts the sanme inputs as json
Uses the 9.3 parsing API

Checks Uni code escapes, especially use of surrogate
pairs, nore thoroughly than json.

Representation closely mrrors json syntax

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 30 ENTERPRISEDB

9.4 Features — jsonb canonical
representation

* Wi tespace and punctuation di ssol ved away
* Only one val ue per object key is kept

e Last one w ns.

* Key order determ ned by |length, then bytew se
conpari son

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 31 ENTERPRISEDB

9.4 Features — jsonb operators

* Has the json operators with the sane semanti cs:
o > >> H> H>>

* Has standard equality and inequality operators
e =<>><>=K<=

° Has new operations testing containnent, key/el enent
presence

. @ <@? 7 ?&

cD

© 2014 EnterpriseDB Corporation. All rights reserved. 32 ENTERPRISEDB

9.4 Features — jsonb equality and
inequality

Conparison i s piecew se

- (bject > Array > Boolean > Nunber > String > Null
(bject with n pairs > object with n - 1 pairs

Array with n elenents > array with n - 1 elenents
Not particularly intuitive

Not ECMA standard ordering, which is possibly not
sui t abl e anyway

© 2014 EnterpriseDB Corporation. All rights reserved. 33

D

ENTERPRISEDB

9.4 features — jsonb functions

jsonb has all the json processing functions, wth the
sane senmantics

| .e. functions that take json argunents

Function nanes start with jsonb_instead of json_

j sonb does not have any of the json creation functions

| .e. functions that take non-json argunents and out put
j son

Wor karound: cast result to jsonb

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 34 ENTERPRISEDB

9.4 features — jsonb indexing

* 2 ops classes for G N indexes

* Default supports contains and exi sts operators:
- @>7?7& 7|

* Non-default ops class jsonb path ops only supports
— (@> operator
— Faster
— Smaller indexes

D

© 2014 EnterpriseDB Corporation. All rights reserved. 35 ENTERPRISEDB

9.4 features — jsonb subdocument indexes

Use “get” operators to construct expression indexes on
subdocunent :

CREATE | NDEX aut hor i ndex ON books USING G N ((jsondata
-> "authors'));

SELECT * FROM books WHERE | sondata -> 'authors' ? 'Carl
Ber nst ei n'

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 36 ENTERPRISEDB

PLV8
Java Script Language | n dat abase

© 2014 EnterpriseDB Corporation. All rights reserved. 3 . ENTERPRISEDB

PLV8: V8 Engine Java Script language

PLV8 is a shared library that provides a PostgreSQ
procedural |anguage powered by

V8 JavaScri pt Engi ne.

Language you can wite in your JavaScript function that
Is callable from SQL.

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 38 ENTERPRISEDB

PLV8: Installation

Requires g++ version 4.5.1 or 4.4.x

For Installation of PLV8, we need V8 engi ne on server

— V8 JavaScript Engine is an open source JavaScript engine developed
by Google for the Google Chrome web browser.

To install V8, you can use RPM5:

— v8-devel-3.14.5.10-9.el6.x86_64

— v8-3.14.5.10-9.€l6.x86_64

OR

Usi ng source code.

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 39 ENTERPRISEDB

PLV8: Installation

cd ~/build

git clone https://code. googl e. cont p/ pl v8j s/
cd plv8js

make

make i nstall

psqgl -d dbnane -c¢ "CREATE EXTENSI ON pl v8"

cD

© 2014 EnterpriseDB Corporation. All rights reserved. 40 ENTERPRISEDB

PLV38: Examples

CREATE OR REPLACE FUNCTI ON plv8_ test(keys text[], vals

text[]) RETURNS
text AS $$
var o = {};
for(var i=0; i<keys.length; i++){
o[keys[i]] = vals[i];
}
return JSON. stringify(o);
$$ LANGUAGE pl v8 | MMUTABLE STRI CT;

* SELECT pl v8_ test(ARRAY[' nane',
129']):

© 2014 EnterpriseDB Corporation. All rights reserved. 41

‘age’ |,

ARRAY[' Tom ,

DB

ENTERPRISEDB

PLV38: Examples

CREATE TYPE rec AS (i integer, t text);
CREATE FUNCTI ON set _of records() RETURNS SETOF rec AS
$$
/1l plv8.return_next() stores records in an internal tuplestore,
/1 and return all of themat the end of function.
plv8.return next({ "i": 1, "t": "a" });

plv8.return next({ "i": 2, "t": "b" });

/'l You can also return records with an array of JSON.
return [{ "i": 3, "t": "c" }, { 1" 4, "t "d" }];

$$

LANGUAGE pl v8;

cD

© 2014 EnterpriseDB Corporation. All rights reserved. 42 ENTERPRISEDB

PLV38: Examples

SELECT * FROM set of records();

© 2014 EnterpriseDB Corporation. All rights reserved. 43 ENTERPRI SEDB

PLV8: Built in functions

pl v8. el og(el evel,

Function print nmessages to server and/or client

just |i ke as RAISE in PL/pgSQL

Acceptabl e el evel s are

© 2014 EnterpriseDB Corporation. All rights reserved.

DEBUG[1-5],
LOG,

INFO,
NOTICE,
WARNING and
ERROR.

)

44

| ogs

D

ENTERPRISEDB

PLV8: Built in functions

pl v8. execute(sqgl [, args])

Execute SQL statenents and retrieve the result. "args"”
Is an optional argunent that replaces $n pl acehol ders
in "sqgl".
Exanpl e:
var json result = plv8.execute('SELECT * FROMtbl');

var num affected = pl v8. execute('DELETE FROM t bl WHERE
price > $1', [1000]);

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 45 ENTERPRISEDB

PLV8: Built in functions

pl v8. prepare(sql, [, typenanes])

Create a prepared statenent. The typenane paraneter is
an array where each elenent is a string to indicate
Post greSQL type nane for bind paraneters. Returned
value is an object of PreparedPl an.

obj ect must be freed by plan.free() before | eaving the
functi on.

Exanpl e:

var plan = plv8.prepare('SELECT * FROM tbl WHERE col =
$1', ["int']);

var rows = plan.execute([1]);

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 46 ENTERPRISEDB

PLV8: Built in functions

Pr epar edPl an. execute([args])
args paranmeter is as plv8.execute(), and

can be omtted if the statenent doesn't have paraneters
at all.

The result of this nethod is sane as in plv8. execute().

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 47 ENTERPRISEDB

PLV8: Built in functions

Pr epar edPl an. cursor([args])
Open a cursor fromthe prepared statenent.
args paraneter is as plv8.execute(), and

can be omtted if the statenent doesn't have paraneters
at all.

The returned object is of Cursor.

It nmust be closed by Cursor.close() before | eaving the
functi on.

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 48 ENTERPRISEDB

PLV8: Built in functions

Pr epar edPl an. cursor([args])

var plan = plv8. prepare(' SELECT * FROM tbl WHERE col = $1',
["int"]);
var cursor = plan.cursor([1]);
var sum = 0, row,
while (row = cursor.fetch()) {
sum += r ow. num
}
cursor. cl ose();

pl an. free();

return sum

cD

© 2014 EnterpriseDB Corporation. All rights reserved. 49 ENTERPRISEDB

PLV8: Built in functions

* PreparedPl an. free()
— Free the prepared statement.

* Cursor.fetch()
— Fetch a row from the cursor and return as an object (note: not an array.)
Fetching more than one row, and move() aren't currently implemented.
* Cursor.close()
— Close the cursor.

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 50 ENTERPRISEDB

PLV8: Built in functions

pl v8. subt ransaction(func)

Function runs the argunent function within a
sub-transacti on.

Needed when you want nultiple “execute(query)” conmmands
to be run atom cally.

| f one of the statenents fails then everything which is
run in this function will be roll ed back.

Note: if an exception is thrown fromthe subtransaction
function, the exception goes out of subtransaction(),
so you'll typically need another try-catch bl ock
out si de.

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 51 ENTERPRISEDB

PLV8: Built in functions

* plv8.subtransaction(func)

Exanpl e:
try{
pl v8. subt ransacti on(function(){
pl v8. execut e(" 1 NSERT | NTO t bl VALUES(1)"):; -- should

be rol |l ed back!

pl v8. execut e(" I NSERT | NTO tbl VALUES(1/0)");-- occurs
an exception

1)
} catch(e) {
do fall back plan ...

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 52 ENTERPRISEDB

JSON and ANSI SQL - PB&J for the DBA

”~

* JSON is naturally
I ntegrated with ANSI SQL
I n Post gres

* JSON and SQL queries
use the sane | anguage, the :
sane planner, and the sane ACI D conpl
f ramewor k

transacti on

* JSON and HSTORE are el egant and easy to use extensions
of the underlying object-relational nodel

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 53 ENTERPRISEDB

JSON and ANSI SQL Example

ELECT DISTINCT
product type,

data->>'brand' a

data->>'available' a
ROM json data

JOIN products
ON (products.product type=json_data.data->>'name’)
WHERE json_data.data->>"'available'=try/e;

product_type | brand | availability
___________________________ o e e ————

AC3 Phone | ACME | true

No need for programmatic logic to combine SQL and
NoSQL in the application — Postgres does it all .

© 2014 EnterpriseDB Corporation. All rights reserved. 54 ENTERPRISEDB

Bridging between SQL and JSON

Simple ANSI SQL Table Definition
CREATE TABLE products (id integer, product nane text);

Select query returning standard data set
SELECT * FROM products;

id | product_ nane

e e e e e e e e e e e m - -
1 | iPhone
2 | Sanmsung
3 | Nokia

Select query returning the same result as a JSON data set
SELECT ROW_TO_JSON(products) FROM products;

"id":1,"product_name":"iPhone"}
{"id":2,"product_name":"Samsung"}
{"id":3,"product_name":"Nokia”}

© 2014 EnterpriseDB Corporation. All rights reserved. 55 ENTERPRISEDB

JSON and BSON

* BSON — stands for
‘Bl nary JSON

* BSON | = JSONB

— BSON cannot represent an integer or
floating-point number with more than
64 bits of precision.

— JSONB can represent arbitrary JSON values.

* Caveat Enptor!

— This limitation will not be obvious during early stages
of a project!

© 2014 EnterpriseDB Corporation. All rights reserved. 6 . ENTERPRISEDB

JSON, JSONB or HSTORE?

JSONV JSONB i s nore versatile than HSTORE

HSTORE provi des nore structure

JSON or JSONB?
— if you need any of the following, use JSON
— Storage of validated json, without processing or indexing it
— Preservation of white space in json text

— Preservation of object key order Preservation of duplicate object
keys

— Maximum input/output speed

* For any other case, use JSONB

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 57 ENTERPRISEDB

JSONB and Node.js - Easy as Tl

// require the Postgres connector
var pg = require("pg");

// connection to local database
var conString = "pg://postgres:password@localhost:5432/nodetraining";

var client = new pg.Client(conString);
client.connect();

// initiate the sample database

client.query("CREATE TABLE IF NOT EXISTS emps(data jsonb)");

client.query("TRUNCATE TABLE emps;");

client.query('INSERT INTO emps VALUES($JSON$ {"firstname'": "Ronald" , "lastname":"McDonald" }$JSONS)')
client.query('INSERT INTO emps values($JSON$ {"firstname": "Mayor", "lastname": "McCheese"}$JSONS)')

// run SELECT query

client.query("SELECT * FROM emps",function(err,result){
console.log("Test Output of JSON Result Object");
console. log(result);
console.log("Parsed rows");

// parse the result set
for (var i = 0; i< result.rows.length ; i++){
var data = JSON.parse(result.rows[i].data);
console.log("First Name => "+ data.firstname + "\t| Last Name => " + data.lastname);
}
client.end();

1|

T
© 2014 EnterpriseDB Corporation. All rights reserved. 58 ENTERPRISEDB

JSON Performance Evaluation . w
i

* (oal

— Help our customers understand when to chose
Postgres and when to chose a specialty solution

— Help us understand where the NoSQL limits of
Postgres are
* Setup
— Compare Postgres 9.4 to Mongo 2.6
— Single instance setup on AWS M3.2XLARGE
(32GB)
* Test Focus
— Data ingestion (bulk and individual)
— Data retrieval

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 59 ENTERPRISEDB

Performance Evaluation

Generate 50 Million
JSON Documents

Load into
Postgres 9.4 Load into MongoDB 2.6

(COPY) (IMPORT)

T

50 Million individual 50 Million individual
INSERT commands INSERT commands

T2

Multiple SELECT Multiple SELECT
statements statements

T3

© 2014 EnterpriseDB Corporation. All rights reserved.

ENTERPRISEDB

NoSQL Performance Evaluation

500%

Mongo DB 2.4/Postgres 9.4 Relative Performance
Comparison (50 Million Documents)

465%

450%

400%

350% 2 /b%

300%

250%

200%

150%

0

& Postgres

100%
50%
0%

Data Load

& MongoDB

Insert

Select

Size

Postgres MongoDB

Data Load (s) 4,732 13,046
Insert (s) 29,236 86,253
Select (s) 594 2,763
Size (GB) 69 145

© 2014 EnterpriseDB Corporation. All rights reserved.

61

Correction to earlier versions:

MongoDB console does not allow for
INSERT of documents > 4K. This
lead to truncation of the MongoDB
size by approx. 25% of all records in
the benchmark.

-

D

ENTERPRISEDB

Performance Evaluations — Next Steps

Initial tests confirmthat Postgres’ can handl e nmany
NoSQL wor kl oads

* EDB is making the test scripts publicly avail abl e

* EDB encourages comunity participation to
better define where Postgres shoul d be used
and where specialty solutions are appropriate

* Downl oad the source at
https://github.com EnterpriseDB/ pg nosqgl ben
K

* Join us to discuss the findings at
http://bit.|y/ EDB- NoSQL- Post gr es- Benchnar k

cD

© 2014 EnterpriseDB Corporation. All rights reserved. 62 ENTERPRISEDB

https://github.com/EnterpriseDB/pg_nosql_benchmark
https://github.com/EnterpriseDB/pg_nosql_benchmark
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

PG XDK

* Postgres Extended Docunent Type Devel oper Kit

* Provides end-to-end Wb 2.0 exanpl e

* Depl oyed as free AM

* First Version

— Postgres 9.4 (beta)
w. HSTORE and JSONB

— Python, Django,
Bootstrap, psycopg2
and nginx

* Next Version:
PL/ V8 & Node.js

* Final Version:
Ruby on Rails

© 2014 EnterpriseDB Corporation. All rights reserved.

N
Welcome to PG XDK

PG XDK allows you to explore the NoSQL capabilities of PostgreSQL, the world's most advanced open-source database.
Brought to you by EnterpriseDB, learn how to manipulate your JSON data with PostgreSQL 9.4 through this guided tutorial.

Get Started »

Get Started Try it Out What is PostgreSQL?
Explore the PG XDK dataset and the NoSQL capabilities Try demos in your favorite programming language to see PostgreSQL is the world's most advanced open-source
of PostgreSQL how you can use NoSQL in your PostgreSQL database. Learn more about the project and read the full
applications. documentation
Get Started »
Learn More »
Python About EnterpriseDB
Try Demo » EnterpriseDB is the only world wide provider of
enterprise-class products and services based on
Pos inced and
View Documentati
independen
Learn More

AWS AMI PG XDK v0.2 - ami-1616b57e

D

63 ENTERPRISEDB

Installing PG XDK

* Select PG XDK v0.2 - am -1616b57e on the AWS Consol e

* Use
htt ps://consol e. aws. anmazon. conlf ec2/ v2/ hone?r egi on=us-e
ast - 1#Launchl nst anceW zar d: am =am - 1616b57e

* Wrks with t2.mcro (AWs Free Tier)

* Renenber to enable HHTP access in the AWS consol e

D

© 2014 EnterpriseDB Corporation. All rights reserved. 64 ENTERPRISEDB

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

Structured or Unstructured?
“No SQL Only” or “Not Only SQL"™?

* Structures and standards energe!

* Data has references (products link to catal ogues;
products have bills of material; conponents appear in
mul ti ple products; storage locations |link to | SO
country tabl es)

* When the database has duplicate data entries, then the
application has to nanage updates in nultiple places —
what happens when there is no ACID transacti onal
nodel ?

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 65 ENTERPRISEDB

Ultimate Flexibility with Postgres

In-DB Development
PL/pgSQL, PL/SQL, PL/Tcl, PL/Perl

PL/Python

Cloud Structured
Deployment Data

Unstructured On Premise
Data Deployment

Web 2.0

Application
Development

© 2014 EnterpriseDB Corporation. All rights reserved. 66 . ENTERPRISEDB

Say yes to ‘Not only SQL’

* Postgres overcones nmany of the standard objections “It
can’t be done wth a conventional database systent

* Postgres

— Combines structured data and unstructured data (ANSI SQL and
JSON/HSTORE)

— |s faster (for many workloads) than than the leading NoSQL-only
solution

— Integrates easily with Web 2.0 application development environments
— Can be deployed on-premise or in the cloud

Do nore with Postgres — the Enterprise NoSQ. Sol ution

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 67 ENTERPRISEDB

Useful Resources

Whitepapers @
http://www.enterprisedb.com/nosql-for-enterprise

— PostgreSQL Advances to Meet NoSQL Challenges (business
oriented)

— Using the NoSQL Capabilities in Postgres (full of code examples)

Run the NoSQL benchmark
— https://github.com/EnterpriseDB/pg_nosql_benchmark

Test drive PG XDK

Check out the jsonbx repo: https://github.com/erthalion/jsonbx

- JSON-modifying operators and functions (hopefully coming to
PostgreSQL 9.5)

-

D

© 2014 EnterpriseDB Corporation. All rights reserved. 68 ENTERPRISEDB

Do More With Postgres!

Flexible

schemas:) Less complexity
Faster in your data
development ENTERPRISEDE environment

cycles

Document,
key-value, and Data Integrity
relational in one without silos
database

	NoSQL On ACID
	Let’s Ask Ourselves, Why NoSQL?
	NoSQL: Real-world Applications
	Postgres’ Response
	Postgres: Key-value Store
	HSTORE Examples
	Postgres: Document Store
	Why JSON
	JSON Examples
	Slide 10
	A simple query for JSON data
	A query that returns JSON data
	JSON Data Types
	JSON Data Type Example
	PowerPoint Presentation
	History: JSON – Before 9.2
	History: JSON – In 9.2
	History: JSON – In 9.3
	Operators and Functions
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	JSON 9.4 – New Operators and Functions
	9.4 Features Set:
	9.4 Features – new json aggregate
	9.4 Features – json creation functions
	9.4 Features – json creation functions (Examples)
	9.4 features – json_typeof
	9.4 features – jsonb type
	9.4 Features – jsonb canonical representation
	9.4 Features – jsonb operators
	9.4 Features – jsonb equality and inequality
	9.4 features – jsonb functions
	9.4 features – jsonb indexing
	9.4 features – jsonb subdocument indexes
	Slide 37
	PLV8: V8 Engine Java Script language
	PLV8: Installation
	Slide 40
	PLV8: Examples
	Slide 42
	Slide 43
	PLV8: Built in functions
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	JSON and ANSI SQL - PB&J for the DBA
	JSON and ANSI SQL Example
	Bridging between SQL and JSON
	JSON and BSON
	JSON, JSONB or HSTORE?
	JSONB and Node.js - Easy as π
	JSON Performance Evaluation
	Performance Evaluation
	NoSQL Performance Evaluation
	Performance Evaluations – Next Steps
	PG XDK
	Installing PG XDK
	Structured or Unstructured? “No SQL Only” or “Not Only SQL”?
	Ultimate Flexibility with Postgres
	Say yes to ‘Not only SQL’
	Useful Resources
	Slide 69

