
Logical Replication of DDLs

Peter Smith
Fujitsu

Zheng Li (Zane)
Amazon RDS Open Source

Agenda
PART 1 – Introduction
• Why use Logical Replication?
• Current PostgreSQL 15
• Missing tables
• Existing Solutions

• Patch motivation / scope
• Logical Replication Overview
• CREATE PUBLICATION syntax
• Basic Architecture

PART 2 – Details
• DDL Replication
• Replication granularity
• Capture DDL
• Logical logging format
• Apply DDL
• Special cases

• Related issues
• Global commands
• Initial schema sync

3 © Fujitsu 2023Fujitsu-Public

Terms

● Logical Replication
● A method of logically replicating data changes from one node ("publisher") to another node ("subscriber").
● See PostgreSQL CREATE PUBLICATION / SUBSCRIPTION

● DDL -- Data Definition Language
● Subset of SQL, used for defining and managing the structure of a database
● e.g. CREATE / ALTER / DROP a database object (TABLE, INDEX, etc.)

● DML -- Data Manipulation Language
● Subset of SQL, used to manipulate and query data in a database
● e.g. INSERT, UPDATE, DELETE

4 © Fujitsu 2023Fujitsu-Public

Why use Logical Replication?

● Physical Replication - An exact binary copy from one node to another

● Logical Replication - A publish/subscribe model that sends “replication messages” to transfer
incremental information from one node to another

● Replicate between different major versions of PostgreSQL
● Replicate between PostgreSQL instances running on different platforms
● Share a subset of the database between multiple database servers
● Distribute changes from a single publication to multiple subscribers
● Built-in logical replication doesn’t replicate DDLs

Schema changes need to be replicated manually on the subscription database, causing downtime

5 © Fujitsu 2023Fujitsu-Public

Logical Replication of DDLs in PostgreSQL 15

● PG Documentation: 31.2
● The schema definitions are not replicated, and the published tables must exist on the subscriber.

● The tables are matched between the publisher and the subscriber using the fully qualified table
name. Replication to differently-named tables on the subscriber is not supported.

● NOTE: Attempting to replicate to a missing subscriber-side table will cause a runtime error.

6 © Fujitsu 2023Fujitsu-Public

Example 1 – Missing table at subscription creation

Subscriber-side table employee does not exist, when the CREATE SUBSCRIPTION is executed

test_pub=# CREATE TABLE employee(id int, name text, PRIMARY KEY(id));
CREATE TABLE
test_pub=# CREATE PUBLICATION pub_all FOR ALL TABLES;
CREATE PUBLICATION

test_sub=# CREATE SUBSCRIPTION mysub CONNECTION 'dbname=test_pub' PUBLICATION pub_all;

Need initial schema sync!

Time

T1

T2
ERROR: relation "public.employee" does not exist

7 © Fujitsu 2023Fujitsu-Public

Example 2 – Replication error due to missing table

Subscriber-side table employee does not exist, after the subscription is already created

test_pub=# CREATE PUBLICATION pub_all FOR ALL TABLES;
CREATE PUBLICATION

test_sub=# CREATE SUBSCRIPTION mysub CONNECTION 'dbname=test_pub' PUBLICATION pub_all;
NOTICE: created replication slot "mysub" on publisher
CREATE SUBSCRIPTION

test_pub=# CREATE TABLE employee(id int, name text, PRIMARY KEY(id));
CREATE TABLE
test_pub=# INSERT INTO employee VALUES (1, 'Fred'), (2, 'Barney');
INSERT 0 2

2023-05-02 11:36:16.977 AEST [15335] LOG: logical replication apply worker for subscription "mysub" has started
2023-05-02 11:38:15.739 AEST [15335] ERROR: logical replication target relation "public.employee" does not exist
2023-05-02 11:38:15.739 AEST [15335] CONTEXT: processing remote data for replication origin "pg_16388" during message type
"INSERT" in transaction 744, finished at 0/1914DF0
2023-05-02 11:38:15.740 AEST [14725] LOG: background worker "logical replication worker" (PID 15335) exited with exit code 1
2023-05-02 11:38:15.744 AEST [15354] LOG: logical replication apply worker for subscription "mysub" has started
2023-05-02 11:38:15.753 AEST [15354] ERROR: logical replication target relation "public.employee" does not exist
2023-05-02 11:38:15.753 AEST [15354] CONTEXT: processing remote data for replication origin "pg_16388" during message type
"INSERT" in transaction 744, finished at 0/1914DF0
2023-05-02 11:38:15.754 AEST [14725] LOG: background worker "logical replication worker" (PID 15354) exited with exit code 1
2023-05-02 11:38:20.752 AEST [15356] LOG: logical replication apply worker for subscription "mysub" has started
2023-05-02 11:38:20.763 AEST [15356] ERROR: logical replication target relation "public.employee" does not exist

Subscriber log file

Need DDL replication!

WITH (disable_on_error)

Time

T1

T2

T4

T3

8 © Fujitsu 2023Fujitsu-Public

Existing solutions for missing tables

● If there is no interest in the missing table, maybe use a different PUBLICATION

● If the mismatched table is due only to column differences, maybe use a PUBLICATION with Column Lists

● Manually CREATE TABLE the missing tables

● Use the pg_dump tool to dump publisher table commands to a file, then execute on the subscriber-side

pg_dump --schema=myschema test_pub > db.sql

test_sub=# \i db.sql;

test_pub=# CREATE PUBLICATION mypub FOR TABLE employee (id, name);
CREATE PUBLICATION

9 © Fujitsu 2023Fujitsu-Public

Maintaining publisher/subscriber table consistency

NOTE: It is difficult to maintain consistency when the publisher-tables may be changing.

test_pub=# CREATE TABLE employee(id int, name text, PRIMARY KEY(id));
CREATE TABLE
test_pub=# INSERT INTO employee VALUES (1, 'Fred');
INSERT 0 1

test_pub=# ALTER TABLE employee ADD age int;
ALTER TABLE
test_pub=# INSERT INTO employee VALUES (2, 'Barney', 27);
INSERT 0 1

2023-05-12 12:43:11.921 AEST [32478]
ERROR: logical replication target relation "public.employee" is
missing replicated column: "age"

test_sub=# CREATE TABLE employee(id int, name text, PRIMARY KEY(id));
CREATE TABLE

Subscriber log file

Subscriber-side
table already exists,
so replication is OK

Time

T1

T2

T4

T3

T5

10 © Fujitsu 2023Fujitsu-Public © Fujitsu 2023

Patch – Motivation and Status

● DDL replication can reduce the need for user-action

● DDL replication can provide a means for schema-mapping

● Patches

● Please find the discussion and suite of patches in the pgsql-hackers thread
-- Support logical replication of DDLs

● The scope of this work is currently limited to just DDL replication of TABLES and
INDEXES, but in future more objects can be replicated

● NOTE: This is ongoing development. Some details may already be outdated

https://www.postgresql.org/message-id/flat/20230503090453.df22u4mukrvcnxx6%40alvherre.pgsql

11 © Fujitsu 2023Fujitsu-Public

CREATE PUBLICATION – new parameter

The CREATE PUBLICATION syntax is unchanged but there is now a new parameter 'ddl' to tell the PUBLICATION what
kinds of objects will have their DDL published.

● This allows DDL publish operations CREATE/ALTER/DROP for the specified kinds of objects

● The default is no DDL replication, which is just same as PG15

● Various other parameter values are also being discussed. More details later.

CREATE PUBLICATION mypub FOR ALL TABLES WITH (ddl = 'table');

CREATE PUBLICATION mypub FOR ALL TABLES WITH (ddl = 'table, index');

12 © Fujitsu 2023Fujitsu-Public

PostgreSQL Logical Replication

Source
backend

Publication

Replication Slot

WAL
Sender

Destination
database

Subscription

Launcher

Logical Decoding &
pgoutput plugin

Client

WAL

INSERT INTO employee VALUES(1,’Fred’);

WAL DML rec
INSERT

1

2

WAL rec 1

WAL rec 2

Decode DML Tablesync
worker

4

3

5

Apply
worker

Apply DML
to existing table

Send msg

13 © Fujitsu 2023Fujitsu-Public

PostgreSQL Logical Replication + DDL support (overview)

Source
backend

Publication

Replication Slot

WAL
Sender

Destination
database

Subscription

Launcher

Logical Decoding &
pgoutput plugin

Client

WAL

CREATE TABLE employee(id int, name text);

WAL DDL rec
data

1

2 DDL option

WAL rec 1

WAL rec 2

Decode DDL

Capture DDL

mapping option

Tablesync
worker

4

3

5

Apply
worker

Apply DDL

Send DDL msg

mapping

Agenda
PART 1 – Introduction
• Why use Logical Replication?
• Current PostgreSQL 15
• Missing tables
• Existing Solutions

• Patch motivation / scope
• Logical Replication Overview
• CREATE PUBLICATION syntax
• Basic Architecture

PART 2 – Details
• DDL Replication
• Replication granularity
• Capture DDL
• Logical logging format
• Apply DDL
• Special cases

• Related issues
• Global commands
• Initial schema sync

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 15

Use Cases of Logical Replication of DDL

• Major version upgrade
• Replicate all/most DDL
• Auto-fix DDL syntax incompatibility

• Migrate multiple databases/subset of a database into one database
• Only replicate certain DDLs
• One desired feature is schema/name mapping

• Heterogeneous replication
• OLTP -> OLAP
• Structured representation facilitates heterogeneous replication

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
16

DDL Option Defines Replication Granularity

• Allow fine-grained DDL replication granularity
• CREATE PUBLICATION mypub FOR ALL TABLES WITH (ddl = 'table, index’);
• FOR pub_all_func WITH (ddl = 'function’);
• FOR pub_create_trigger WITH (ddl = 'trigger’);

• Develop the full feature in multiple stages based on the replication
granularity

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
17

Capture DDL

• Inline (ProcessUtilitySlow)
• Captures all or any subset of DDLs
• Small amount of code change

• Event Triggers
• Existing mechanism to capture DDLs
• Event trigger is only supported on a subset of DDLs, need to expand on the

current event trigger support

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

Capture DDL with Event Triggers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
19

A new WAL record for DDL messages

XLOG_LOGICAL_DDL_MESSAGE
/*

* Generic logical decoding DDL message WAL record.

*/

typedef struct xl_logical_ddl_message

{

Oid dbId; /* database Oid emitted from */

Size prefix_size; /* length of prefix, including null terminator */

Oid relid; /* id of the table */

DeparsedCommandType cmdtype; /* type of SQL command */

Size message_size; /* size of the message */

/* Payload, including null-terminated prefix of length prefix_size */

char message[FLEXIBLE_ARRAY_MEMBER];

} xl_logical_ddl_message;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
20

Logical Logging Format

• Command string
• Lightweight, easy to implement
• Force search_path during apply
• Doesn’t support schema mapping
• Doesn’t allow straight machine editing of the command

• Structured format (JSON) generated by a deparsing utility
• Fully qualifies DB objects - more secure
• Allows support of schema mapping and command editing on the target – more

flexible/robust
• Allows command splitting on source

• CREATE TABLE AS … SELECT … => CREATE TABLE
• Development and maintenance burden, test coverage - more work

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 21

Logical Logging Format:
DDL Deparsing

ALTER TABLE T1 ADD c3 int;

ALTER TABLE public.t1 ADD c3 int4;

{ "fmt":"ALTER TABLE %{identity}D %{subcmds:, }s",

 "identity":{
 "objname":"t1",
 "schemaname":"public"
 },

 "subcmds": [
 {
 "fmt":"ADD COLUMN %{definition}s",
 "definition":{
 "fmt":"%{name}I %{coltype}T %{default}s %{not_null}s %{collation}s",
 "name":"c3",
 "type":"column",
 "coltype":{
 "typmod":"",
 "typarray":false,
 "typename":"int4",
 "schemaname":"pg_catalog"
 },
 "default":{
 "fmt":"DEFAULT %{default}s",
 "present":false
 },
 "not_null":"",
 "collation": {
 "fmt":"COLLATE %{name}D",
 "present":false
 }
 }
 }
]
 }

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 22

Logical Logging Format:
DDL Deparsing with

schema mapping

ALTER TABLE T1 ADD c3 int;

ALTER TABLE s1.t1 ADD c3 int4;

{ "fmt":"ALTER TABLE %{identity}D %{subcmds:, }s",

 "identity":{
 "objname":"t1",
 "schemaname":”s1"
 },

 "subcmds": [
 {
 "fmt":"ADD COLUMN %{definition}s",
 "definition":{
 "fmt":"%{name}I %{coltype}T %{default}s %{not_null}s %{collation}s",
 "name":"c3",
 "type":"column",
 "coltype":{
 "typmod":"",
 "typarray":false,
 "typename":"int4",
 "schemaname":"pg_catalog"
 },
 "default":{
 "fmt":"DEFAULT %{default}s",
 "present":false
 },
 "not_null":"",
 "collation": {
 "fmt":"COLLATE %{name}D",
 "present":false
 }
 }
 }
]
 }

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
23

Apply DDL

• Reconstruct the DDL commands from DDL messages
• Perform schema mapping if configured (TODO)
• Transform the command to auto-resolve syntax incompatibility if there is any

(TODO)

• Automatically run ALTER SUBSCRIPTION … REFRESH PUBLICATION
after CREATE TABLE

• Ownership mapping (new subscription option)

24 © Fujitsu 2023Fujitsu-Public

PostgreSQL Logical Replication + DDL support (details)

Source
backend

Publication

Replication Slot

WAL
Sender

Destination
database

Subscription

Launcher

Logical Decoding &
pgoutput plugin

Client

WAL

CREATE TABLE employee(id int, name text);

WAL DDL rec

1

Event Triggers:

DDL deparsing
uses info from
parse tree and
system catalogs

2 DDL option

WAL rec 1

WAL rec 2

Decode DDL

Capture DDL

mapping option

Tablesync
worker

4

3

5

Reconstruct SQL
from JSON data
in DDL msg.

Execute it

Apply
worker

Apply DDL

Send DDL msg

JSON data
mapping

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
25

Special Cases

• Non-replicated object
• DROP TABLE replicated_foo, notreplicated_bar; => DROP TABLE IF EXISTS;

• Command performs both DDL and DML
• CREATE TABLE foo AS SELECT field_1, field_2 FROM bar; / SELECT INTO;
• ALTER TABLE ddl_test ADD COLUMN b int DEFAULT random();
• Guarantee data consistency

• This is not a full list of special cases

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
26

Special Cases: CREATE TABLE AS SELECT / SELECT INTO

• WAL log and replicate the DDL part first without DML
• CREATE TABLE t2 AS SELECT id, name from t1;

=>
CREATE TABLE t2 (id serial, name text);

• Let the data population replicate to the subscriber by the
subsequent DML replication

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
27

Special Cases: table rewrite with volatile function

• ALTER TABLE ddl_test ADD COLUMN b int DEFAULT random();
• don’t replicate such commands
• if the rewrite function is replication safe, can separate the DDL change and

table rewrite (UPDATES) and replicate each.
ddl_test(a,b)
a|b

1|random num(pub)
2|random num(pub)

ddl_test(a)
a

1
2
3

ddl_test(a)
a

1
2

ddl_test(a,b)
a|b

1|random num(pub)
2|random num(pub)
3|random num(sub)

ddl_test(a,b)
a|b

1|random num(sub)
2|random num(sub)
3|random num(sub)

Pub

Sub

Replicate UPDATESReplicate DDL

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 28

Testing

• TAP tests for DDL replication

• A new testing module for the DDL deparsing utility
• Test the deparsed JSON output of a DDL is expected

• Test that the reconstructed DDL command is expected

• Test the reconstructed command from JSON can be executed and has the
same effect as the original command by comparing the results from pg_dump

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
29

Related Issues

• Global commands

• Initial Schema Sync

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
30

Global Commands

• Commands that manage global objects
• DATABASE Commands
• ROLE Commands
• TABLESPACE Commands
• GRANT ROLE (GRANT privilege to rolex)
• GRANT/REVOKE on global objects (GRANT ALL ON DATABASE)

• Not captured by event triggers

• Global objects are not schema qualified

• Per-DB replication model (per-db pg_publication) isn’t ideal for
global objects replication

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
31

Initial Schema Sync

• Today initial schema has to be manually setup on the subscriber

• Automate initial schema sync
• How to get the schema definition on the subscriber

• Use pg_dump with new options to dump table with dependencies
• Provide more ruleutils functions like pg_get_viewdef
• Build a pg_dump_library that can be referenced by pg_dump and the backend

• Properly handle concurrent DDLs during initial sync

• It’s being discussed in a different pgsql-hackers thread Initial schema
sync for logical replication

https://www.postgresql.org/message-id/flat/db02e6773adb4dbcb5b9bb3803ebe340%40amazon.com
https://www.postgresql.org/message-id/flat/db02e6773adb4dbcb5b9bb3803ebe340%40amazon.com

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
32

Summary

• Motivation

• Support DDL replication on the existing logical replication
architecture
• Replication granularity
• Capture DDL
• Logical logging format
• Apply DDL
• Special cases

• Related issues
• Global commands
• Initial schema sync

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 33

Zheng Li (Zane)
Amazon RDS Open Source
zhelli@amazon.com

Thank you for attending

Peter Smith
Fujitsu
peter.b.smith@fujitsu.com

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

References
• wiki https://wiki.postgresql.org/wiki/Logical_replication_of_DDLs

• pgsql-hackers thread - Support logical replication of DDLs

• pgsql-hackers thread - Deparsing utility commands

• pgsql-hackers thread - Support logical replication of global object commands

• pgsql-hackers thread - Initial schema sync for logical replication

• PG documentation for Logical Replication

• PG documentation for CREATE PUBLICATION

https://wiki.postgresql.org/wiki/Logical_replication_of_DDLs
https://www.postgresql.org/message-id/flat/CAAD30U%2BpVmfKwUKy8cbZOnUXyguJ-uBNejwD75Kyo%3DOjdQGJ9g%40mail.gmail.com
https://www.postgresql.org/message-id/flat/20150215044814.GL3391%40alvh.no-ip.org
https://www.postgresql.org/message-id/flat/CAAD30UKD7YPEbYcs_L9PYLcLZjnxyqO%3DJF5_mnAwx7g_PtOi3A%40mail.gmail.com
https://www.postgresql.org/message-id/flat/db02e6773adb4dbcb5b9bb3803ebe340%40amazon.com
https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/sql-createpublication.html

