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How we thought we were going to 
migrate to RDS with no downtime

What actually happened when we tried it



Our Installation

● Isolated production environment in AWS
● Multiple databases

○ Live Transactions
○ Payment Details
○ FX Quotes and Trades
○ Fraud Tracking
○ Audit Records for PCI, AML, etc.

● Dedicated hosts for PostgreSQL Install
● Backups to S3



“No downtime”

● No disruption of the service
● 99.999% availability

○ We have limited opportunity for whole-service outages to 

perform upgrades or migrations
○ Evolution of the service has to be planned

● Customer Service doesn’t count
● Administrative functions don’t count

○ Fraud screening
○ Merchant access



payments matter



Outline

● Determine a reasonable plan
○ Migrate to Multi-AZ RDS installation
○ Change everything else after

● Set a deadline
○ It needs to happen
○ Current administration overhead is too high

● Submit a talk
○ If it has to be done, and you have a deadline, what could go 

wrong?



The Plan

● Create a replica of current installation
● Work out all the details
● Keep good records

○ For the talk, of course
○ and the audits

● Re-run the tests
○ To make sure it is 1am proof
○ To measure and reduce side-effects
○ And document all the steps to be 1am proof



Start with the WORM

● Dedicated database that stores events
○ All requests and responses, in and out, with detailed timing
○ No updates
○ For auditing and diagnostics

● Can afford to have delayed read updates
○ Audits and diagnostics can wait - usually

● Can NOT afford to lose writes
○ We need it all recorded



WORM Plan

● Use DMS to migrate all of the data
● Switch all reads to the replicant - the soon-to-be 

master
● Verify data integrity, etc.
● Switch writes

○ Bump the sequence numbers on the new master
○ Switch DNS records
○ Wait for the old database to drain
○ Let DMS finish migration



First lessons

● max_replication_slots
● max_wal_senders

○ Needs to be increased to accommodate DMS
○ Each task needs a slot

● wal_sender_timeout
● hba.conf

○ Needs to allow access from DMS instance
○ host replication my_super_user 10.0.2.232/32 md5
○ my_super_user needs replication permission



“that might be an issue” - Tim
2016-03-21T21:10:58 [SOURCE_UNLOAD ]W: Value for column 
'Data' was truncated. data len: 252218, bind len: 65538 
(ar_odbc_stmt.c:2752)

2016-03-21T21:39:07 [TARGET_LOAD ]E: Command failed to load 
data with exit error code 1, Command output: ERROR: insert 
or update on table "Milestones" violates foreign key 
constraint "Milestones_RecordId_fkey"



First attempts

● First test failed
○ “text” is considered a CLOB type in DMS
○ Don’t load your entire schema

● Second “Full LOB” test was slow
○ We let it finish, and it took 9d 20h 48m

● Third test seemed to work
○ We ran with LOB truncation set beyond largest
○ Finished in 2h 8m

● Did it work?



Reality …

● We thought it worked
● Our checks seemed to indicate it did
● We switched over the readers to use it
● Writes remained on the old master
● DMS continued to migrate new records
● Unfortunately, it corrupted some of the new 

records
○ We checked, and it only started after the initial load



Other things we learned

● Functions are not migrated
○ This may be problematic for you

● Indexes are not migrated
○ This is likely good, but you also need to know that you need to 

re-create them

● Constraints are not migrated
○ Likely to facilitate bulk data loading, but could be done after 

that

● Just the basic table layout



What we did

● Use pg_dump to get all the pieces
○ pg_dump -s my_database > file.psql

● Edit heavily
○ Remove table creation
○ Remove sequence updates

● Use DMS “Full Load with ongoing changes”
○ Will import all the data from when you start, they start 

migrating changes as they happen

● When the full load has completed, load the file



What that gets you

● Your data is loaded and changes are migrating
● Your functions are in place
● Indexes are re-created
● Constraints are back

● Basically, you have a (mostly) functional database
○ Except for the sequences



aside

● Creating indexes takes a while
● Adjust console timeouts accordingly
● Some kind of ASCII progress meter would have 

saved our first run

● PCI is fun!



Sequence update

something like this:

select max("MilestoneId") + 10000 into _seq  
from timeline."Milestones";
select 'alter sequence timeline."
Milestones_MilestoneId_seq" restart with ' || 
_seq::text;



One last test

● This time with the right instance type
● Initial load took 29 minutes

○ We suspect the IOPS for the destination made the difference
○ db.m3.xlarge Multi-AZ vs. db.r3.2xlarge Multi-AZ

● Still started to corrupt data after the initial load
● Still didn’t want to run long term without full LOB

○ We know the length of the longest existing record
○ We don’t know anything about any new records



corruption

Data        | {"status":200,"entity":"var ...
bit_length  | 5536

Data        | '{"status":200,"entity":"var ...
bit_length  | 5544



Next … the important DB

● About 75 inter-related tables
○ Live transactions
○ Order details
○ Payment details
○ Fraud
○ FX quotes
○ Remittance data
○ etc.

The normal “evolved mess”



Minor detail - C

create or replace function uuid.generate()
returns uuid
as '$libdir/uuid-ossp', 'uuid_generate_v4'
volatile strict language C;



create or replace function uuid.generate()
returns uuid
security definer
language plpgsql
as $$
declare
begin
    return uuid_generate_v4();
end;
$$;



create or replace function uuid.generate()
returns uuid
security definer
language plpgsql
as $$
declare
begin
    return pgcrypto.gen_random_uuid();
end;
$$;



“that’s a killer” - Tim

Hstore is not a supported data type for 
postgres using AWS DMS. Please find the list 
of supported data types at http://docs.aws.
amazon.
com/dms/latest/userguide/CHAP_Reference.
Source.PostgreSQL.DataTypes.html .'



oops

[11:18] benoit: pg_xlog caused a drive on db1 
        to go to 92% in 12 hours from 88%

● While you are figuring out all this stuff...



We didn’t get far

● We use some PG specific types
○ Like HSTORE
○ In about 5 different tables
○ DMS doesn’t like that .. yet

● We don’t have any more clever schemes
● So we stopped



Recommendations for the RDS Team

● Support all PostgreSQL data types
○ And if you can’t do all of them, at least scan the schema at the 

start and stop

● Fix “Full LOB” migration
○ It shouldn’t take 120x longer than truncating
○ Especially if 99.9% of the data is shorter than the chunk size

● DMS Instance Types
○ What is the difference?
○ No indication anywhere of what is impacted by the selection



More Recommendations

● DMS Instance storage
○ What is it for?  How do I chose?

● Figure out the data corruption
○ We have no idea why it would happen
○ Nothing special about what we’re doing

● Design for novice users
○ A key motivator for us was offloading the low-level details

● DMS instance couldn’t resolve ip-10-0-128-10.
ec2.internal



One more

● Fix the DMS status bar
○ Currently indicates % of tables migrated
○ In our case, sat at 0% for a while
○ Then 33% for a while
○ Then 66% for a LONG time

● Some better method?



So?

● Are we done yet?
○ No

● Can we use DMS?
○ No … not yet

● Can we use RDS?
○ Yes!
○ But we want NOTIFY/LISTEN to work soon!

● What now?
○ Old-school methods



We still have to do it

● WORM data
○ Manual replication
○ Bump the sequences
○ Update DNS
○ Backfill the updates

● Payment Database
○ Backfill as much as possible
○ Stop everything
○ dump/restore
○ Eat into our uptime budget



¯\_(ツ)_/¯



better ideas?


