
The problem 9.1 solution Remarks

Debugging complex SQL queries
with writable CTEs

Gianni Ciolli

2ndQuadrant Italia

PostgreSQL Conference Europe 2011
October 18-21, Amsterdam

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Outline
1 The problem

Description
Generic examples
Specific examples

2 9.1 solution
Description
Example 3 (words)
Example 4 (GCD)

3 Remarks
Without writable CTEs
A limited solution
Question time

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Description

The problem

• We consider SQL queries with subqueries
• SQL allows to write very complex queries
• subqueries are represented by some of the vertices in the

query tree
• The result of a query might not be what you expect

• maybe you wrote the wrong JOIN condition
• or you mistyped an expression
• . . .
• difficult to trace the error in the query tree

• Therefore you need to debug your query
• EXPLAIN tells you the shape of the query tree, but not the

contents of each node, which is what this talk is about.

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Generic examples

Generic example 1
Minimal: only one subquery

SELECT ...
FROM
(
SELECT ...
FROM ...

) a

• If the output is not what we expect,
then where is the error?

• SQL gives access the output of the
query, but not to the output of the
intermediate subquery

• We could say: an SQL query is a
black data box

• We don’t say a black box, because
the source code is available

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Generic examples

Generic example 2
How black is the black data box?

SELECT ...
FROM
(
SELECT ...
FROM
(
SELECT ...
FROM ...
WHERE ...

) b1
LEFT JOIN ... ON ...

) a1
GROUP BY ...

• Subqueries can be nested,
combined with joins,
grouped. . .

• Real-world problems can
be represented by
complicated SQL queries

• Very hard to understand
why the final output is not
what you expect

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Specific examples

Example 3
Find all the other words with the same length

Problem
Given a list of words, to each word assign an array with all the
other words having the same number of letters.

Solution (in HL)

Join the list of words with itself, creating a list of pairs of
different words with the same length. Then aggregate the right
side of each pair to create the array.

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Specific examples

Recursive example 4
Greatest Common Divisor (á la Euclid)

Problem
Given two positive integers x and y , find the largest integer that
divides both x and y .

Solution (Euclid of Alexandria, about 23 centuries ago)

Let z be the remainder of x when divided by y .
If z = 0 then y is the solution.
Otherwise replace x with y , and y with z, and repeat.

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Description

Our solution
Overview, from 9.1

• Idea
• intercept intermediate nodes in the query tree
• log their output to previously created debug tables
• examine contents of debug tables after executing the query

• Implementation
• 9.1: rewrite subqueries as CTEs, then add writable CTEs

which contain logging statements
• (in 8.4 or 9.0 we rewrite subqueries as CTEs, then alter

them to invoke functions that contain logging statements)
• Impact

• all in core PostgreSQL 9.1, no need to extend the server
• no impact on the effects of the query
• no impact on the resultset of the query
• small impact on resource consumption, just the logging

statement (the execution time will not change much)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Description

Limitations

• Each writable CTE is executed once, therefore it cannot
capture the intermediate status of the table if the query is
RECURSIVE

• There is an impact on the original definition of the query:
you need to rewrite it to add logging information; however it
is easy to mark the debug code you added so that it
doesn’t get confused with the original code

• Correlated subqueries are not covered by this technique;
they would require “circular” references in RECURSIVE
CTEs which are unsupported at the moment (thanks to
Albe Laurenz for pointing this out!)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 3 (words)

Example 3, without CTEs
Neither efficient nor readable

SELECT a.word, c.arr
FROM (SELECT word,length(word) AS n

FROM words) a
LEFT JOIN (

SELECT word, array_agg(word1) AS arr
FROM (SELECT a.word, a1.word AS word1

FROM (SELECT word,length(word) AS n
FROM words) a

JOIN (SELECT word,length(word) AS n
FROM words) a1

ON a.n = a1.n AND a.word != a1.word) b
GROUP BY word) c

ON a.word = c.word;

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 3 (words)

Example 3, with CTEs
Efficient and more readable, but still a black data box

WITH a AS (
SELECT word, length(word) AS n
FROM words) ,

b AS (
SELECT a.word, a1.word AS word1
FROM a
JOIN a AS a1
ON a.n = a1.n AND a.word != a1.word) ,

c AS (
SELECT word, array_agg(word1) AS arr
FROM b
GROUP BY word)

SELECT a.word, c.arr
FROM a LEFT JOIN c ON a.word = c.word;

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 3 (words)

Example 3, with CTEs
A clear data box

CREATE TEMPORARY TABLE debug_table
(id serial, t text, r text);

WITH a AS (...) ,
debug_a AS (INSERT INTO debug_table(t,r)

SELECT ’a’, ROW(a.*)::text FROM a),
b AS (...),
debug_b AS (INSERT INTO debug_table(t,r)

SELECT ’b’, ROW(b.*)::text FROM b),
c AS (...),
debug_c AS (INSERT INTO debug_table(t,r)

SELECT ’c’, ROW(c.*)::text FROM c)
SELECT a.word, c.arr
FROM a LEFT JOIN c ON a.word = c.word;

TABLE debug_table;Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 3 (words)

Example 3, with CTEs: the output
In case you were wondering. . .

word | arr
-----------+---
Alexander | {Christoph,Jean-Paul,Guillaume}
Andreas | {Stephen,Vincent,Michael,Dimitri}
Bruce | {Gavin,Simon,Peter,Steve}
Cédric | {Daniel,Selena,Robert,Poojan,Magnus,Stefan,Harald,Gilles,Gianni,Heikki}
Christoph | {Alexander,Guillaume,Jean-Paul}
Daniel | {Cédric,Selena,Robert,Poojan,Magnus,Stefan,Harald,Gilles,Gianni,Heikki}
Dave | {Will,Marc,Greg,Luis}
Dimitri | {Michael,Andreas,Stephen,Vincent}
Ed |
Gavin | {Simon,Peter,Bruce,Steve}
Gianni | {Robert,Magnus,Stefan,Harald,Gilles,Daniel,Cédric,Heikki,Selena,Poojan}
Gilles | {Selena,Heikki,Cédric,Daniel,Gianni,Harald,Stefan,Magnus,Poojan,Robert}
Greg | {Marc,Dave,Will,Luis}
Guillaume | {Christoph,Alexander,Jean-Paul}
Harald | {Gilles,Stefan,Magnus,Poojan,Selena,Robert,Heikki,Cédric,Daniel,Gianni}
Heikki | {Gianni,Gilles,Daniel,Cédric,Selena,Robert,Poojan,Magnus,Harald,Stefan}
Jean-Paul | {Guillaume,Christoph,Alexander}
Jon | {Ram,Yeb}
Jonathan | {Leonardo}
Leonardo | {Jonathan}
Luis | {Marc,Will,Greg,Dave}
Magnus | {Stefan,Poojan,Robert,Selena,Heikki,Cédric,Daniel,Gianni,Gilles,Harald}
Marc | {Dave,Greg,Luis,Will}
Michael | {Andreas,Dimitri,Stephen,Vincent}
Peter | {Steve,Gavin,Simon,Bruce}
Poojan | {Heikki,Cédric,Daniel,Gianni,Gilles,Harald,Stefan,Magnus,Robert,Selena}
Ram | {Yeb,Jon}
Robert | {Magnus,Heikki,Cédric,Daniel,Gianni,Gilles,Harald,Stefan,Poojan,Selena}
Selena | {Heikki,Gilles,Harald,Daniel,Stefan,Magnus,Poojan,Robert,Cédric,Gianni}
Simon | {Peter,Gavin,Steve,Bruce}
Stefan | {Heikki,Selena,Robert,Poojan,Magnus,Harald,Gilles,Gianni,Daniel,Cédric}
Stephen | {Dimitri,Andreas,Vincent,Michael}
Steve | {Peter,Bruce,Simon,Gavin}
Vincent | {Stephen,Dimitri,Andreas,Michael}
Will | {Luis,Marc,Greg,Dave}
Yeb | {Ram,Jon}
(36 rows)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 4 (GCD)

Recursive example 4, with CTEs
Greatest Common Divisor (á la Euclid)

WITH RECURSIVE a(x,y) AS
(

VALUES (:x,:y)
UNION ALL

SELECT y, x % y
FROM

(
SELECT *
FROM a
WHERE y > 0
ORDER BY x
LIMIT 1

) b
WHERE y > 0

)
SELECT x
FROM a
WHERE y = 0;

$ psql -v x=1547 \
-v y=1729 \
-f gcd-1.sql

x

91
(1 row)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Example 4 (GCD)

Recursive example 4, logged
Greatest Common Divisor (á la Euclid, explained)

CREATE TABLE debug_table
(

id serial,
x numeric,
y numeric

);

WITH RECURSIVE a(x,y) AS
(...)

, debug_a AS (
INSERT INTO debug_table(x,y)
SELECT * FROM a

)
SELECT x
FROM a
WHERE y = 0;

TABLE debug_table;

$ psql -v x=1547 \
-v y=1729 \
-f gcd-2.sql

CREATE TABLE
x

91
(1 row)

id | x | y
----+------+------
1 | 1547 | 1729
2 | 1729 | 1547
3 | 1547 | 182
4 | 182 | 91
5 | 91 | 0

(5 rows)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Without writable CTEs

Before 9.1
Without writable CTEs

• CTEs were introduced in 8.4, supporting only SELECT
(read-only)

• Before 8.4 this technique cannot be applied at all
• In 8.4 and 9.0 we can create a bespoke logging function

which will write logging information behind the scenes, and
SELECT it

• However, the planner assumes that your logging CTE does
not modify the data, so it will skip that CTE unless it is
required by other parts of the query

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Without writable CTEs

Example 4 on 8.4 (not working) Joke!
CREATE FUNCTION debug_func
(i_x numeric, i_y numeric)
RETURNS numeric
LANGUAGE plpgsql AS #BODY#
BEGIN

INSERT INTO debug_table(x,y)
VALUES (i_x,i_y);

RETURN NULL;
END;
#BODY#;

WITH RECURSIVE a(x,y) AS
(...)

, debug_a AS (
SELECT debug_func(x,y)
FROM a

)
SELECT x
FROM a
WHERE y = 0;

This doesn’t work. . . because:
• “the Amsterdam theme

keeps changing all my $
to # (G.S.)”

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Without writable CTEs

Example 4 on 8.4 (not working)
CREATE FUNCTION debug_func
(i_x numeric, i_y numeric)
RETURNS numeric
LANGUAGE plpgsql AS $BODY$
BEGIN

INSERT INTO debug_table(x,y)
VALUES (i_x,i_y);

RETURN NULL;
END;
$BODY$;

WITH RECURSIVE a(x,y) AS
(...)

, debug_a AS (
SELECT debug_func(x,y)
FROM a

)
SELECT x
FROM a
WHERE y = 0;

This doesn’t work, because:
1 the contents of debug_a

are not needed to compute
the result of the query

2 PostgreSQL assumes that
debug_a is read-only, as it
should be

3 therefore there is no
reason to compute it at all

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

A limited solution

Example 4 on 8.4 (hack)
It is not a part that we’re proud of

• Solution: deceive the planner.
• That is: rewrite the query, so that the contents of debug_a

seem necessary to the planner, while in fact they are not.
• Warning 1: deceiving the planner is bad practice. Use it

responsibly, and document clearly any usage.
• Warning 2: you are altering the original query in a way

which might not be easily undone. Make sure you copy the
original version before proceeding!

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

A limited solution

Recursive example 4, on 8.4
Greatest Common Divisor (á la Euclid, explained with a hack)

WITH RECURSIVE a(x,y) AS
(...)

, debug_a AS (
SELECT debug_func(x,y)
FROM a

)
SELECT x
FROM a
WHERE y = 0
AND -1 != (

SELECT count(1)
FROM debug_a

);

$ psql --cluster 8.4/main \
-v x=1547 -v y=1729 \
-f gcd-4.sql

x

91
(1 row)

id | x | y
----+------+------
1 | 1547 | 1729
2 | 1729 | 1547
3 | 1547 | 182
4 | 182 | 91
5 | 91 | 0

(5 rows)

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Question time

Question time

• Any questions?

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

The problem 9.1 solution Remarks

Question time

Thank you for your attention!

Feedback
http://2011.pgconf.eu/feedback

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

http://2011.pgconf.eu/feedback

The problem 9.1 solution Remarks

Question time

Licence

• This document is distributed under the
Creative Commons Attribution-Non
commercial-ShareAlike 3.0 Unported licence

• A copy of the licence is available at the URL
http://creativecommons.org/licenses/by-nc-sa/3.0/

or you can write to
Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Debugging complex SQL querieswith writable CTEs Gianni Ciolli

http://creativecommons.org/licenses/by-nc-sa/3.0/

	The problem
	Description
	Generic examples
	Specific examples

	9.1 solution
	Description
	Example 3 (words)
	Example 4 (GCD)

	Remarks
	Without writable CTEs
	A limited solution
	Question time

