
PostgreSQL on VAX ! Or….

What I did for fun during my
summer vacation!

VAX?

MicroVAX 3800
Relative Performance x VAX-11/780 (1 MIP) 3.8

Number of Processors 1

Max. Memory Support 64 MB

Max. Local Disk Capacity (formatted) MV 3800: 2.4 GB;
MV 3900: 9.7 GB

Max I/O Throughput 3.3 MB/s

Floating Point Accelerator Standard

Floating Point Data Types F, D, G, H

Cache Size 1 KB on chip
64 KB on board

Where to find a VAX?

simh - VAX emulator
The Computer History Simulation Project
http://simh.trailing-edge.com/

Installing NetBSD on a ka655x VAX 3800:
http://www.netbsd.org/ports/vax/emulator-howto.html

PDP-11 UNIX V5
PDP-11 UNIX V6
PDP-11 UNIX V7

Operating systems
that support VAX

Operating systems
PostgreSQL supports

VAX/VMS
VAX/Rdb

4.3BSD

Install NetBSD
Time passes….

24 hours later...

Install pkgsrc
Time passes….

Run out of disk space… drives are limited to 2.4GB … create new drive

Time passes….

Ran out of inodes … create new file system

Time passes…

48 hours later….

Build perl, python, bison, ...
Time passes….

Ran out of space again… create 20G NFS volume from host machine and mount it from guest machine ...

Time passes….

72 hours later...

Build Postgres!
Time passes….

48 hours later

Run regression tests...
Kernel panic (probably a NetBSD bug that still warrants some investigation):

panic: usrptmap space leakage

cpu0: Begin traceback...

panic: usrptmap space leakage

Stack traceback :

 Process is executing in user space.

cpu0: End traceback...

Out of memory … initdb’s smallest numbers are still too large ...

Reduce max_backends and run tests with MAX_CONNECTIONS=2

It took 7h20m to run the regression tests

No IEEE Floating Point
Expected but the consequences are surprising.

On a modern architecture with IEEE floating point:

$ gcc -Wall exp.c -lm

$./a.out

exp(88.0297) = 1.70141e+38

On VAX:

simh$ gcc -Wall exp.c -lm

simh$./a.out

[4] Illegal instruction (core dumped) ./a.out

Oh well, Postgres documents that users should expect the floating point semantics of the architecture, so job done?
No, Postgres doesn’t catch SIGILL or override infnan() so it dies rather than raise a floating point error.

Infinite loop in GROUPING SETS test

commit 44ed65a545970829322098e22d10947e6d545d9a

Author: Tom Lane <tgl@sss.pgh.pa.us>

Date: Sun Aug 23 13:02:13 2015 -0400

 Avoid use of float arithmetic in bipartite_match.c.

 Since the distances used in this algorithm are small integers (not more

 than the size of the U set, in fact), there is no good reason to use float

 arithmetic for them. Use short ints instead: they're smaller, faster, and

 require no special portability assumptions.

 Per testing by Greg Stark, which disclosed that the code got into an

 infinite loop on VAX for lack of IEEE-style float infinities. We don't

 really care all that much whether Postgres can run on a VAX anymore,

 but there seems sufficient reason to change this code anyway

regression=# select
pid,now()-query_start,now()-state_change,waiting,state,query from
pg_stat_activity where pid <> pg_backend_pid();
+------+-----------------+-----------------+---------+--------+--+
| pid | ?column? | ?column? | waiting | state | query |
+------+-----------------+-----------------+---------+--------+--+
| 9185 | 00:53:38.571552 | 00:53:38.571552 | f | active | select a, b, grouping(a,b), sum(v), count(*), max(v)#|
| | | | | | from gstest1 group by rollup (a,b); |
+------+-----------------+-----------------+---------+--------+--+

Planner FP overflows
commit aad663a0b4af785d0b245bbded27537f23932839

Author: Tom Lane <tgl@sss.pgh.pa.us>

Date: Sun Aug 23 15:15:47 2015 -0400

Reduce number of bytes examined by convert_one_string_to_scalar().

Previously, convert_one_string_to_scalar() would examine up to 20 bytes of
the input string, producing a scalar conversion with theoretical precision
far greater than is of any possible use considering the other limitations on
the accuracy of the resulting selectivity estimate. (I think this choice
might pre-date the caller-level logic that strips any common prefix of the
strings; before that, there could have been value in scanning the strings far
enough to use all the precision available in a double.)

Aside from wasting cycles to little purpose, this choice meant that the
"denom" variable could grow to as much as 256^21 = 3.74e50, which could
overflow in some non-IEEE float arithmetics. While we don't really support
any machines with non-IEEE arithmetic anymore, this still seems like quite an
unnecessary platform dependency. Limit the scan to 12 bytes instead, thus
limiting "denom" to 256^13 = 2.03e31, a value more likely to be computable
everywhere.

Per testing by Greg Stark, which showed overflow failures in our standard
regression tests on VAX.

Bottom line
Goal was to add new build farm member building Postgres
regularly and testing it on VAX architecture (even if
emulated).

But that’s hopeless. We would never pass the regression
tests without significantly weakening our testing.

Without a build farm member we can’t seriously say we
“support” VAX :(

