PostgreSQL on VAX'!

What | did for fun during my
summer vacation!

VAX?

MicroVAX 3800

Relative Performance x VAX-11/780 (1 MIP) | 3.8

- --_. — |'r:r"||.-._

Number of Processors 1 _
P ATTEYITTITIIE |
Max. Memory Support 64 MB
Max. Local Disk Capacity (formatted) MV 3800: 2.4 GB;
MV 3900: 9.7 GB
Max 1/0O Throughput 3.3 MB/s
Floating Point Accelerator Standard
Floating Point Data Types F,D,G,H
Cache Size 1 KB on chip

64 KB on board

Where to find a VAX?

amazon Computers
~ 21 Try Prime
Shop by
Department ~ Recently Viewed ¥ Greg's Amazon.com Today's Deals
DEC - VAX 3800/3900 CPU BD/KA655-AA
by DEC

Be the first to review this item

Currently unavailable.
We don't know when or if this item will be back in stock.

simh - VAX emulator

The Computer History Simulation Project
http://simh.trailing-edge.com/

Installing NetBSD on a ka655x VAX 3800:
http://www.netbsd.org/ports/vax/emulator-howto.html

Operating systems Operating systems
that support VAX PostgreSQL supports

Install NetBSD

Time passes

24 hours later...

Install pkgsrc

Time passes....

Run out of disk space... drives are limited to 2.4GB ... create new drive

Time passes....

Ran out of inodes ... create new file system

Time passes...

48 hours later....

Build perl, python, bison, ...

Time passes....

Ran out of space again... create 20G NFS volume from host machine and mount it from guest machine ...
Time passes....

72 hours later...

Build Postgres!

Time passes

48 hours later

Run regression tests...

Kernel panic (probably a NetBSD bug that still warrants some investigation):

panic: usrptmap space leakage
cpul: Begin traceback...
panic: usrptmap space leakage
Stack traceback :
Process 1is executing in user space.

cpul: End traceback...

Out of memory ... initdb’s smallest numbers are still too large ...
Reduce max_backends and run tests with MAX_CONNECTIONS=2

It took 7h20m to run the regression tests

No IEEE Floating Point

Expected but the consequences are surprising.

On a modern architecture with IEEE floating point:
S gcc -Wall exp.c —-1m

$./a.out

exp (88.0297) = 1.70141e+38

On VAX:
simh$ gcc -Wall exp.c -1lm
simh$./a.out

[4] ITllegal instruction (core dumped) ./a.out

Oh well, Postgres documents that users should expect the floating point semantics of the architecture, so job done?
No, Postgres doesn’t catch SIGILL or override infnan() so it dies rather than raise a floating point error.

Infinite loop in GROUPING SETS test

regression=# select

pid,now () -query_start,now()-state_change,waiting,state,query from
pg stat activity where pid <> pg backend pid();
oo oo o S SR — o B e +
query |
__ +
select a, b, grouping(a,b), sum(v), count(*), max(v)#
| | | | | | from gstestl group by rollup (a,b);
+

commit 44ed65a545970829322098e22d10947e6d545d9%a

Author: Tom Lane <tgl@sss.pgh.pa.us>

Date: Sun Aug 23 13:02:13 2015 -0400

Avoid use of float arithmetic in bipartite match.c.

Since the distances used in this algorithm are small integers (not more
than the size of the U set, in fact), there is no good reason to use float
arithmetic for them. Use short ints instead: they're smaller, faster, and

require no special portability assumptions.

Per testing by Greg Stark, which disclosed that the code got into an
infinite loop on VAX for lack of IEEE-style float infinities. We don't
really care all that much whether Postgres can run on a VAX anymore,

but there seems sufficient reason to change this code anyway

Planner FP overflows

commit aad663a0b4af785d0b245bbded27537£23932839
Author: Tom Lane <tgl@sss.pgh.pa.us>

Date: Sun Aug 23 15:15:47 2015 -0400

Reduce number of bytes examined by convert one string to scalar().

Previously, convert one string to scalar() would examine up to 20 bytes of
the input string, producing a scalar conversion with theoretical precision
far greater than is of any possible use considering the other limitations on
the accuracy of the resulting selectivity estimate. (I think this choice
might pre-date the caller-level logic that strips any common prefix of the
strings; before that, there could have been value in scanning the strings far
enough to use all the precision available in a double.)

Aside from wasting cycles to little purpose, this choice meant that the
"denom" variable could grow to as much as 256721 = 3.74e50, which could
overflow in some non-IEEE float arithmetics. While we don't really support
any machines with non-IEEE arithmetic anymore, this still seems like quite an
unnecessary platform dependency. Limit the scan to 12 bytes instead, thus
limiting "denom" to 256713 = 2.03e31, a value more likely to be computable
everywhere.

Per testing by Greg Stark, which showed overflow failures in our standard
regression tests on VAX.

Bottom line

Goal was to add new build farm member building Postgres
regularly and testing it on VAX architecture (even if
emulated).

But that's hopeless. We would never pass the regression
tests without significantly weakening our testing.

Without a build farm member we can’t seriously say we
“support” VAX (

