ORCA and PostgreSQL

Venkatesh Raghavan

South Bay PostgreSQL Meetup, San Jose
PostgreSQL Planner

• Addresses join re-ordering
• Treats everything else as add-on (grouping, with clause, etc.)
• Imposes order on specific optimization steps
• Recursively descends into subqueries
 • Sometimes planner is unable to unnest complex correlated subqueries
• High code complexity
 • Maximum: 102 (Orca 8.5)
 • Minimum: 6.4 (Orca 1.5)
Join Ordering vs. “Everything Else”

- TPC-H Query 5
 - 6 Tables
 - “Harmless” query

Join Order Problem
Size of search space $< 100,000$

“Everything Else”
Size of search space $\sim 230,000,000$
Orca Architecture

- Orca is not baked into one host system
Key Features

• Smarter partition elimination
• Subquery unnesting
• Optimizing common table expressions (CTE)
• Additional functionality
 • Improved join ordering
 • Join-aggregate reordering
 • Sort order optimization
TPC-DS Orca vs. Planner on HAWQ

TPC-DS 10TB, 16 nodes, 48 GB/node
Subquery Unnesting
Subqueries: Impact

● Heavily used in many workloads
 ○ BI/reporting tools generate substantial number of subqueries
 ○ TPC-H workload: 40% of the 22 queries
 ○ TPC-DS workload: 20% of the 111 queries

● Inefficient plans mean query takes a long time or does not terminate

● Optimizations
 ○ De-correlation
 ○ Conversion of subqueries to joins
Subquery Handling: Orca vs. Planner

<table>
<thead>
<tr>
<th>CSQ Class</th>
<th>Planner</th>
<th>Orca</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSQ in select list</td>
<td>Correlated Execution</td>
<td>Join</td>
</tr>
<tr>
<td>CSQ in disjunctive filter</td>
<td>Correlated Execution</td>
<td>Join</td>
</tr>
<tr>
<td>Multi-Level CSQ</td>
<td>No Plan</td>
<td>Join</td>
</tr>
<tr>
<td>CSQ with group by and inequality</td>
<td>Correlated Execution</td>
<td>Join</td>
</tr>
<tr>
<td>CSQ must return one row</td>
<td>Correlated Execution</td>
<td>Join</td>
</tr>
<tr>
<td>CSQ with correlation in select list</td>
<td>Correlated Execution</td>
<td>Correlated Execution</td>
</tr>
</tbody>
</table>
How to enable Orca on Postgres?
Get Your Hands On It!

- GPORCA: https://github.com/greenplum-db/gporca
- Pivotal Tracker: http://bit.ly/1m1WGDn
Getting Orca on Postgres

• Step 1: Lift and shift translators already implemented in GPDB
• Step 2: Functions in `lsyscache.*` and `gucs*` need to moved
• Step 3: Update makefiles (most of this already done in GPDB)
Publications

- Optimization of Common Table Expressions in MPP Database Systems, **VLDB 2015**
 - Amr El-Helw, Venkatesh Raghavan, Mohamed A. Soliman, George C. Caragea, Zhongxian Gu, Michalis Petropoulos

- Orca: A Modular Query Optimizer Architecture for Big Data, **SIGMOD 2014**

- Optimizing Queries over Partitioned Tables in MPP Systems, **SIGMOD 2014**
 - Lyublena Antova, Amr El-Helw, Mohamed Soliman, Zhongxian Gu, Michalis Petropoulos, Florian Waas

- Reversing Statistics for Scalable Test Databases Generation, **DBTest 2013**
 - Entong Shen, Lyublena Antova

- Total Operator State Recall - Cost-Efficient Reuse of Results in Greenplum Database, **ICDE Workshops 2013**
 - George C. Caragea, Carlos Garcia-Alvarado, Michalis Petropoulos, Florian M. Waas

- Testing the Accuracy of Query Optimizers, **DBTest 2012**
 - Zhongxian Gu, Mohamed A. Soliman, Florian M. Waas
 - Automatic Capture of Minimal, Portable, and Executable Bug Repros using AMPERe, **DBTest 2012**
 - Lyublena Antova, Konstantinos Krikellas, Florian M. Waas
 - Automatic Data Placement in MPP Databases, **ICDE Workshops 2012**
 - Carlos Garcia-Alvarado, Venkatesh Raghavan, Sivaramakrishnan Narayanan, Florian M. Waas
Backup
What Is GP-Orca?

• State-of-the-art query optimization framework designed from scratch to:
 – **Improve** – performance, ease-of-use
 – **Enable** – foundation for future research and development
 – **Connect** – applies to multiple host systems (GPDB, HAWQ, Postgres)
Subqueries: Definition

- A query that is nested inside an outer query block
- Correlated Subquery (CSQ) is a subquery that uses values from the outer query

```
SELECT * FROM part p1
WHERE price >
(SELECT avg(price) FROM part p2 WHERE p2.brand = p1.brand)
```
Subqueries in Disjunctive Filters

- Find parts with: \(\text{size} > 40 \ \text{OR} \ \text{price} > \text{the average brand price} \)

SELECT *
FROM part p1
WHERE p_size > 40 OR
p_retailprice > (SELECT avg(p_retailprice)
 FROM part p2
 WHERE p2.p_brand = p1.p_brand)
Subqueries in Disjunctive Filters
Currently in Apache HAWQ
When Orca is exercised

Parser → Planner → Executor → Results

SQL → Query → Plan → Orca → Results
When Orca fallbacks

Orca will automatically fallback to the legacy optimizer for unsupported features.