

JIT compilation in PostgreSQL

From jit=off to jit_above_cost=0

Current state
● LLVM-based JIT in core since PG11
● Used to compile expressions
● Can also compile ‘tuple deforming’
● Triggered based on costs
● Built with OLAP in mind

Current state
● Issues :

– LLVM is one huge beast

– Its optimizer is built for AOT, not JIT

– -O0 can produce terrible code (slower than interpreting)

– Cost and runtime don’t have a good correlation => JIT
triggered for queries with no possible gains

New player in town : copyjit
● Based on ‘copy-and-patch’ paper
● Objectives :

– very fast compilation time
– good enough code
– Web applications, OLTP, not OLAP

How it works
● Ahead of time, a collection of stencils is built
● Each stencil is a piece of code with holes
● When a query must be compiled, stencils are

put together in memory
● And holes are filled in

How it works

Stencils required for ‘SELECT 42’

Corresponding amd64 assembly

How it works

Corresponding amd64 assembly C structures for the compiler

Compilation time
● Under 100 us even for more complicated

queries
● Not even optimized yet...

Optimizing the generated code
● Three options :

– Create specialized stencils

– Create micro-stencils

– Create stencils spanning several ops

● Examples :
– Calling int4eq is common, create a specific stencil

– When calling a strict function, unroll the null checks

Work in progress
● Working on tuple deforming

– Without this, ‘only’ 5 to 10 % gain in query execution

● All opcodes are not implemented yet

● AMD64 specific so far
– Ready for ARM64, for others see below...

● Depends on Clang/LLVM and musttail
– Thus limited architecture support there

Trade-offs

Setup time

R
un

 ti
m

e

Interpreter

Ta
rg

e
t f

or
 c

op
yj

it

Ta
rg

e
t

fo
r

L
LV

M
PLA

YGROUND

Open for competition !
● I’m certain some other solutions could be tested too

– Cranelift ? ‘Cranelift is a fast, secure, relatively simple and
innovative compiler backend.’

● Could/should we have PostgreSQL support tiered
compilation ?
– Depending on query cost or estimated rows, call different JIT

compilers…
● What is needed on PostgreSQL side to cache compiled

code ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

