
  

JIT compilation in PostgreSQL

From jit=off to jit_above_cost=0



  

Current state
● LLVM-based JIT in core since PG11
● Used to compile expressions
● Can also compile ‘tuple deforming’
● Triggered based on costs
● Built with OLAP in mind



  

Current state
● Issues :

– LLVM is one huge beast

– Its optimizer is built for AOT, not JIT

– -O0 can produce terrible code (slower than interpreting)

– Cost and runtime don’t have a good correlation => JIT 
triggered for queries with no possible gains



  

New player in town : copyjit
● Based on ‘copy-and-patch’ paper
● Objectives :

– very fast compilation time
– good enough code
– Web applications, OLTP, not OLAP



  

How it works
● Ahead of time, a collection of stencils is built
● Each stencil is a piece of code with holes
● When a query must be compiled, stencils are 

put together in memory
● And holes are filled in



  

How it works

Stencils required for ‘SELECT 42’

Corresponding amd64 assembly



  

How it works

Corresponding amd64 assembly C structures for the compiler



  

Compilation time
● Under 100 us even for more complicated 

queries
● Not even optimized yet...



  

Optimizing the generated code
● Three options :

– Create specialized stencils

– Create micro-stencils

– Create stencils spanning several ops

● Examples :
– Calling int4eq is common, create a specific stencil

– When calling a strict function, unroll the null checks



  

Work in progress
● Working on tuple deforming

– Without this, ‘only’ 5 to 10 % gain in query execution

● All opcodes are not implemented yet

● AMD64 specific so far
– Ready for ARM64, for others see below...

● Depends on Clang/LLVM and musttail
– Thus limited architecture support there



  

Trade-offs
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Open for competition !
● I’m certain some other solutions could be tested too

– Cranelift ? ‘Cranelift is a fast, secure, relatively simple and 
innovative compiler backend.’

● Could/should we have PostgreSQL support tiered 
compilation ?
– Depending on query cost or estimated rows, call different JIT 

compilers…
● What is needed on PostgreSQL side to cache compiled 

code ?
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