JIT compilation in PostgreSQL

From jit=off to jit_above cost=0

Current state

LLVM-based JIT in core since PG11
Used to compile expressions

Can also compile ‘tuple deforming’
Triggered based on costs

Built with OLAP In mind

Current state

e |SSues :

- LLVM is one huge beast
— Its optimizer is built for AOT, not JIT
— -00 can produce terrible code (slower than interpreting)

— Cost and runtime don’t have a good correlation => JIT
triggered for queries with no possible gains

New player in town : copyijit

* Based on ‘copy-and-patch’ paper

* Objectives
- very fast compilation time

- good enough code
- Web applications, OLTP, not OLAP

How It works

e Ahead of time, a collection of stencils Is built

* Each stencil is a piece of code with holes

* When a query must be compiled, stencils are
put together in memory

 And holes are filled In

How It works

extern ExprEvalStep op;
extern void CONST_ISNULL:
extern intptr_t CONST_VALUE;

Datum stencil_EEOF_CONST (struct ExprState *state, struct ExprContext *econtext, bool *isNull)
.:
top.resnull = (char) ({intptr_t) &CONST_ISHULL;

.I:II} i'ES"-‘ﬂlUE- = IDﬂtUm _xI:DMST_IlerLUE IalalﬂﬂlﬁllalﬂﬂIEIE“aIﬂﬂIE“aIﬂ Stenc.l-'l- EEDP DDNE:
movzbl 0x5(%rdi), “eax
goto_next:

mowv al.(%rdx)
mov 0x8(%rdi), “rax
; : ret
Datum stencil_EEOP_DOME (struct ExprState *state, struct ExprContext *econtext, bool #isNull)
{ k| 11 = . 11: O0EO00A000000010 <stencil_EEOP_CONST=:
LiN” E itaFE"rEi"” ' movabs $0x@,%rax
bttt bk el p mov 0100 %rax), srex

movabs $0x8,%r8

Stencils required for ‘SELECT 42’ test “réb,rab

setne (%rcx)

‘ mow 0x3(%rax),srax
movabs $0x®, %rex
mowv rex, [“rax)
movabs $0x8,%rax
jmp fLrax

Corresponding amd64 assembly

How It works

IOOANDAAN00NeaRARd <stencil_EEOP_DOME=:
movzbl 0x5(%rdi), “eax

X
AN

mow al. (%rdx)
mow Ox8(%rdi), Srax
ret
0000000000000010 <stencil EEOP_CONST=: const unsigned char EEOP_DONE__code[11] = {0xT, Oxb6, 0x47
movabs $0x8,%rax ?ﬁdﬁrmffffh for EEOP DONE
M@ ¥ LU L L L ¥ LUINE
ﬁgiabE ;;;éi ::x...rcx CUTSt unSigTed ch?rIgEDP_C?MST__cnd?:i?] = ﬂ&xié; Ex:%. E
test r8b_“rab @xd, @345. Bx8b, Ox48, 0x10, 0x49, 0xb8, O0x0, Ox@, Ox@, @
setne (Srcx) 'Jﬂxcj. Bxf, @x95, @x1, 0x48, 0xBb, 0x40, 0x8, 0x48, 0xb9, O
e . Bx®, 0x48, OxB9, @x8};
mow Mx81%rax), srax

const Patch EEOP_CONST__patches[3] = {

ﬁi:abE it {2, RELKIND_R_X86_64_64, TARGET_OP},
Tovabe t0%0 rax {16, RELKIND_R_X86_64_64, TARGET_CONST_ISNULL!,
jmp erax {36, RELKIND_R_X86_64_64, TARGET CONST VALUE},

Corresponding amd64 assembly

‘ C structures for the compiler

Compilation time

e Under 100 us even for more complicated
gueries

* Not even optimized yet...

Optimizing the generated code

 Three options :
- Create specialized stencils
- Create micro-stencils
- Create stencils spanning several ops

 Examples:
- Calling int4eq is common, create a specific stencll
- When calling a strict function, unroll the null checks

Work In progress

Working on tuple deforming

- Without this, ‘only’ 5 to 10 % gain in query execution
All opcodes are not implemented yet

AMDG64 specific so far
- Ready for ARM64, for others see below...

Depends on Clang/LLVM and musttall

— Thus limited architecture support there

Run time

Interpreter

Trade-offs

>

Setup time

Open for competition !

I’'m certain some other solutions could be tested too

— Cranelift ? ‘Cranelift is a fast, secure, relatively simple and
Innovative compiler backend.’

Could/should we have PostgreSQL support tiered

compilation ?

— Depending on query cost or estimated rows, call different JIT
compilers...

What is needed on PostgreSQL side to cache compiled
code ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

