Integrating Map Data with PostGIS

UK PostgreSQL Conference 2008

Mark Cave-Ayland
Sirius Corporation
What is PostGIS?

- A collection of SQL types, operators and functions to “spatially enable” PostgreSQL
- Also includes a spatial R-Tree indexing scheme
 - Implemented using GiST
- This allows us to extend PostgreSQL to ask questions like:
 - How many features lie within 100m?
 - What is the total length of a given road?
 - What is the total area of water in my city?
How can we use PostGIS?

• PostGIS can primarily be used in two different ways
 – GIS object data store
 • ESRI Shapefiles
 • OS MasterMap
 – Spatial object processing
 • Calculate binary predicates such as Crosses(), Touches(), and Intersects()
 • Calculate the geometric results of Intersection() and Union()
• PostGIS makes use of two popular existing libraries
 – PROJ.4
 • Provides co-ordinate system and on-the-fly reprojection support
 – GEOS
 • Provides spatial predicates and geometric processing functions
• But all functions can be accessed using SQL
Installation

- Very easy with RHEL 5
- This installs the libraries required
 - All that remains is to load the new functions into the database
- PostGIS provides 2 files:
 - lwpostgis.sql
 - Main operators and types (ST prefixed)
 - spatial_ref_sys.sql
 - A list of international spatial reference systems
• Creating a spatial database
 – PostGIS requires PL/PGSQL

```
postgres@cleopatra:~$ createdb postgis
CREATE DATABASE
postgres@cleopatra:~$ createlang plpgsql postgis
postgres@cleopatra:~$ psql -d postgis /usr/share/postgresql/lwpostgis.sql
postgres@cleopatra:~$ psql -d postgis /usr/share/postgresql/spatial_ref_sys.sql
```

• Check that everything is working

```
postgis=# SELECT postgis_full_version();
           postgis_full_version
-----------------------------------------------
 POSTGIS="1.3.2" GEOS="3.0.0-CAPI-1.4.1" PROJ="Rel. 4.6.0, 21 Dec 2007" USE_STATS (1 row)
```

• Now we can start adding geometries
PostGIS Geometries

- PostGIS supports OGC-compliant geometries
 - From the Open Geospatial Consortium
 - Geometries are defined as part of the “OpenGIS Simple Features Implementation Specification for SQL”
 - The specification can be downloaded for free
 - PostGIS has been officially certified as OGC SFS 1.1 compliant
Basic Geometry Types

- Basic OGC geometry types
 - POINT
 - POLYGON
 - LINESTRING

- Geometry array types
 - MULTIPPOINT
 - MULTIPOLYGON
 - MULTILINESTRING
 - GEOMETRYCOLLECTION
Basic geometry examples

```
postgis=# SELECT ST_AsText(ST_GeomFromText('POINT(4 51)'));
   st_astext
-----------
   POINT(4 51)
(1 row)

postgis=# SELECT ST_AsText(ST_GeomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3)'));
   st_astext
---------------------
   LINESTRING(0 0, 1 1, 2 2, 3 3)
(1 row)

postgis=# SELECT ST_AsText(ST_GeomFromText('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'));
   st_astext
------------------------
   POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))
(1 row)

postgis=# SELECT ST_AsText(ST_GeomFromText('POLYGON((0 0, 0 1, 1 1, 1 0, 0 -1))'));
ERROR: geometry contains non-closed rings
CONTEXT: SQL function "st_geomfromtext" statement 1

postgis=# SELECT ST_AsText(ST_GeomFromText('LINESTRING(0,0 1,1 2,2 3,3)'));
ERROR: parse error - invalid geometry
CONTEXT: SQL function "st_geomfromtext" statement 1
```
More complex queries

- These examples use the free datasets from http://mappinghacks.com
- Imported into PostGIS from ESRI Shapefiles
 - World Borders
 - Country outlines stored as 2D POLYGONs
 - Cities
 - POINTs representing major cities throughout the world
More complex queries

● Example 1

● Given a table of countries, find the names of all of the countries that border Chad

```sql
postgis=# SELECT t1.cntry_name FROM world_borders t1, world_borders t2 WHERE ST_Touches(t1.the_geom, t2.the_geom) AND t2.cntry_name = 'Chad';
  cntry_name
-----------------------
     Libya
      Niger
      Sudan
  Cameroon
Central African Republic
    Nigeria
(6 rows)
```
More complex queries

• Example 2

- Given a table of cities and a table of countries, find the total number of cities within each country and return the list in alphabetical order

```
postgis=# SELECT world_borders.cntry_name, COUNT(world_borders.cntry_name) 
        FROM cities, world_borders WHERE ST_Within(cities.the_geom, world_borders.the_geom) 
        GROUP BY world_borders.cntry_name 
        ORDER BY world_borders.cntry_name;

<table>
<thead>
<tr>
<th>cntry_name</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>3</td>
</tr>
<tr>
<td>Albania</td>
<td>1</td>
</tr>
<tr>
<td>Algeria</td>
<td>5</td>
</tr>
<tr>
<td>Angola</td>
<td>3</td>
</tr>
<tr>
<td>Argentina</td>
<td>9</td>
</tr>
<tr>
<td>Armenia</td>
<td>1</td>
</tr>
<tr>
<td>Australia</td>
<td>14</td>
</tr>
<tr>
<td>Austria</td>
<td>5</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>1</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>3</td>
</tr>
</tbody>
</table>

... etc ...
```
There are many GIS tools that can access data within PostGIS

- Open source
 - JUMP
 - QGIS
 - GeoServer
 - MapServer
- Some proprietary support also exists
 - CadCorp SIS
 - Safe Software FME
 - ESRI
Tools that can use PostGIS

- Similarly any applications that can connect to PostgreSQL can access spatial data
 - Java, PHP, Perl etc.
- This allows data to loaded into online mapping applications such as Google Maps
- Wrapper classes are available for most languages
Demonstration & Questions

For more information:
- http://postgis.refractions.net

Or specific enquiries:
- http://www.siriusit.co.uk