

How Did We Live Without LATERAL?

Vik Fearing

PGConf.EU — November 4, 2016
Tallinn, Estonia

About Me

Vik Fearing

2ndQuadrant France

irc: xocolatl

twitter: @pg_xocolatl

• 20 topics
• Thousands of posts per topic
• Except “Topic 12” which has none

topics

id integer

name text

posts

id integer

topic_id integer

username text

post_date timestamptz

title text

body text

Goal:
Display all the topics in alphabetical order,
with information about the last five posts.

SELECT t.name,
 p.username,
 p.post_date,
 p.title
FROM topics t
LEFT JOIN
 (SELECT username, post_date, title
 FROM posts
 WHERE topic_id = t.id
 ORDER BY post_date DESC
 LIMIT 5) p ON true
ORDER BY t.name, p.post_date DESC;

ERROR: invalid reference to FROM-
clause entry for table "t"
LINE 9: WHERE topic_id = t.id
 ^
HINT: There is an entry for table
"t", but it cannot be referenced
from this part of the query.

ERROR: invalid reference to FROM-
clause entry for table "t"
LINE 9: WHERE topic_id = t.id
 ^
HINT: There is an entry for table
"t", but it cannot be referenced
from this part of the query.

Window Functions

SELECT topics.name,
 tmp.username,
 tmp.post_date,
 tmp.title
FROM topics
LEFT JOIN
 (SELECT *
 FROM
 (SELECT *,
 row_number() OVER
 (PARTITION BY topic_id
 ORDER BY post_date DESC) rownum
 FROM posts) tmpin
 WHERE rownum <= 5) tmp ON tmp.topic_id =
topics.id
ORDER BY topics.name, tmp.post_date DESC;

SELECT topics.name,
 tmp.username,
 tmp.post_date,
 tmp.title
FROM topics
LEFT JOIN
 (SELECT *
 FROM
 (SELECT *,
 row_number() OVER
 (PARTITION BY topic_id
 ORDER BY post_date DESC) rownum
 FROM posts) tmpin
 WHERE rownum <= 5) tmp ON tmp.topic_id =
topics.id
ORDER BY topics.name, tmp.post_date DESC;

SELECT topics.name,
 tmp.username,
 tmp.post_date,
 tmp.title
FROM topics
LEFT JOIN
 (SELECT *
 FROM
 (SELECT *,
 row_number() OVER
 (PARTITION BY topic_id
 ORDER BY post_date DESC) rownum
 FROM posts) tmpin
 WHERE rownum <= 5) tmp ON tmp.topic_id =
topics.id
ORDER BY topics.name, tmp.post_date DESC;

SELECT topics.name,
 tmp.username,
 tmp.post_date,
 tmp.title
FROM topics
LEFT JOIN
 (SELECT *
 FROM
 (SELECT *,
 row_number() OVER
 (PARTITION BY topic_id
 ORDER BY post_date DESC) rownum
 FROM posts) tmpin
 WHERE rownum <= 5) tmp ON tmp.topic_id =
topics.id
ORDER BY topics.name, tmp.post_date DESC;

 Sort (cost=20945.60..21067.05 rows=48583 width=31)
 (actual time=208.715..208.719 rows=96 loops=1)
 Sort Key: topics.name, tmpin.post_date
 Sort Method: quicksort Memory: 32kB
 -> Merge Left Join (cost=0.56..15998.36 rows=48583
width=31)
 (actual time=0.057..208.594 rows=96
loops=1)
 Merge Cond: (topics.id = tmpin.topic_id)
 -> Index Scan using topics_pkey on topics
 (cost=0.14..12.44 rows=20 width=13)
 (actual time=0.009..0.024 rows=20 loops=1)
 -> Materialize (...) (...)
 -> Subquery Scan on tmpin
 (...rows=48583...) (...rows=95...)
 Filter: (tmpin.rownum <= 5)
 Rows Removed by Filter: 145654
 -> WindowAgg
 (...rows=145749...) (...rows=145749...)
 -> Index Scan using ... on posts
 (...rows=145749...)
(...rows=145749...)
 Total runtime: 208.809 ms

 Sort (cost=20945.60..21067.05 rows=48583 width=31)
 (actual time=208.715..208.719 rows=96 loops=1)
 Sort Key: topics.name, tmpin.post_date
 Sort Method: quicksort Memory: 32kB
 -> Merge Left Join (cost=0.56..15998.36 rows=48583
width=31)
 (actual time=0.057..208.594 rows=96
loops=1)
 Merge Cond: (topics.id = tmpin.topic_id)
 -> Index Scan using topics_pkey on topics
 (cost=0.14..12.44 rows=20 width=13)
 (actual time=0.009..0.024 rows=20 loops=1)
 -> Materialize (...) (...)
 -> Subquery Scan on tmpin
 (...rows=48583...) (...rows=95...)
 Filter: (tmpin.rownum <= 5)
 Rows Removed by Filter: 145654
 -> WindowAgg
 (...rows=145749...) (...rows=145749...)
 -> Index Scan using ... on posts
 (...rows=145749...)
(...rows=145749...)
 Total runtime: 208.809 ms

 Sort (cost=20945.60..21067.05 rows=48583 width=31)
 (actual time=208.715..208.719 rows=96 loops=1)
 Sort Key: topics.name, tmpin.post_date
 Sort Method: quicksort Memory: 32kB
 -> Merge Left Join (cost=0.56..15998.36 rows=48583
width=31)
 (actual time=0.057..208.594 rows=96
loops=1)
 Merge Cond: (topics.id = tmpin.topic_id)
 -> Index Scan using topics_pkey on topics
 (cost=0.14..12.44 rows=20 width=13)
 (actual time=0.009..0.024 rows=20 loops=1)
 -> Materialize (...) (...)
 -> Subquery Scan on tmpin
 (...rows=48583...) (...rows=95...)
 Filter: (tmpin.rownum <= 5)
 Rows Removed by Filter: 145654
 -> WindowAgg
 (...rows=145749...) (...rows=145749...)
 -> Index Scan using ... on posts
 (...rows=145749...)
(...rows=145749...)
 Total runtime: 208.809 ms

Stored Procedures
pl/pgsql

CREATE FUNCTION n_posts (topic integer, num
integer)
RETURNS SETOF posts AS
$$
DECLARE
 empty posts;
BEGIN
 RETURN QUERY
 SELECT * FROM posts
 WHERE topic_id = $1
 ORDER BY post_date DESC
 LIMIT $2;
 IF NOT FOUND THEN
 RETURN NEXT empty;
 END IF;
END;
$$
LANGUAGE plpgsql;

CREATE FUNCTION n_posts (topic integer, num
integer)
RETURNS SETOF posts AS
$$
DECLARE
 empty posts;
BEGIN
 RETURN QUERY
 SELECT * FROM posts
 WHERE topic_id = $1
 ORDER BY post_date DESC
 LIMIT $2;
 IF NOT FOUND THEN
 RETURN NEXT empty;
 END IF;
END;
$$
LANGUAGE plpgsql;

SELECT topics.name, (n_posts(id, 5)).*
FROM topics
ORDER BY topics.name;

IT'S A TRAP!

SELECT topics.name, (n_posts(id, 5)).*
FROM topics
ORDER BY topics.name;

IT'S A TRAP!

SELECT topics.name, (n_posts(id, 5)).*
FROM topics
ORDER BY topics.name;

IT'S A TRAP!

Sort (cost=1554.87..1604.87 rows=20000
width=13)
 (actual time=27.005..27.018 rows=96
loops=1)
 Sort Key: name
 Sort Method: quicksort Memory: 32kB
 -> Seq Scan on topics
 (cost=0.00..126.10 rows=20000
width=13)
 (actual time=1.071..26.764 rows=96
loops=1)
Total runtime: 27.053 ms

Sort (cost=1554.87..1604.87 rows=20000
width=13)
 (actual time=27.005..27.018 rows=96
loops=1)
 Sort Key: name
 Sort Method: quicksort Memory: 32kB
 -> Seq Scan on topics
 (cost=0.00..126.10 rows=20000
width=13)
 (actual time=1.071..26.764 rows=96
loops=1)
Total runtime: 27.053 ms

Arrays

SELECT name, (unnest(posts)).*
FROM
 (SELECT *,
 (SELECT coalesce(array_agg(posts),
 array[null::posts])
AS posts
 FROM
 (SELECT posts
 FROM posts
 WHERE topic_id = topics.id
 ORDER BY post_date DESC
 LIMIT 5) tmp)
 FROM topics
 OFFSET 0) AS tmp;

SELECT name, (unnest(posts)).*
FROM
 (SELECT *,
 (SELECT coalesce(array_agg(posts),
 array[null::posts])
AS posts
 FROM
 (SELECT posts
 FROM posts
 WHERE topic_id = topics.id
 ORDER BY post_date DESC
 LIMIT 5) tmp)
 FROM topics
 OFFSET 0) AS tmp;

SELECT name, (unnest(posts)).*
FROM
 (SELECT *,
 (SELECT coalesce(array_agg(posts),
 array[null::posts])
AS posts
 FROM
 (SELECT posts
 FROM posts
 WHERE topic_id = topics.id
 ORDER BY post_date DESC
 LIMIT 5) tmp)
 FROM topics
 OFFSET 0) AS tmp;

 Subquery Scan on tmp
 (cost=0.00..108.70 rows=2000 width=41)
 (actual time=0.161..1.221 rows=96 loops=1)
 -> Seq Scan on topics
 (cost=0.00..98.35 rows=20 width=13)
 (actual time=0.110..0.868 rows=20 loops=1)
 SubPlan 1
 -> Aggregate
 (cost=4.85..4.86 rows=1 width=54)
 (actual time=0.039..0.039 rows=1
loops=20)
 -> Limit (...) (...)
 -> Index Scan ...
 Index Cond: (topic_id =
topics.id)
 Total runtime: 1.325 ms

 Subquery Scan on tmp
 (cost=0.00..108.70 rows=2000 width=41)
 (actual time=0.161..1.221 rows=96 loops=1)
 -> Seq Scan on topics
 (cost=0.00..98.35 rows=20 width=13)
 (actual time=0.110..0.868 rows=20 loops=1)
 SubPlan 1
 -> Aggregate
 (cost=4.85..4.86 rows=1 width=54)
 (actual time=0.039..0.039 rows=1
loops=20)
 -> Limit (...) (...)
 -> Index Scan ...
 Index Cond: (topic_id =
topics.id)
 Total runtime: 1.325 ms

 Subquery Scan on tmp
 (cost=0.00..108.70 rows=2000 width=41)
 (actual time=0.161..1.221 rows=96 loops=1)
 -> Seq Scan on topics
 (cost=0.00..98.35 rows=20 width=13)
 (actual time=0.110..0.868 rows=20 loops=1)
 SubPlan 1
 -> Aggregate
 (cost=4.85..4.86 rows=1 width=54)
 (actual time=0.039..0.039 rows=1
loops=20)
 -> Limit (...) (...)
 -> Index Scan ...
 Index Cond: (topic_id =
topics.id)
 Total runtime: 1.325 ms

Recursive Queries

WITH RECURSIVE
 rp AS (SELECT topic_name as topic_name, (p).*, 1 AS rcount
 FROM (SELECT t.name as topic_name,
 (SELECT p FROM posts p
 WHERE p.topic_id = t.id
 ORDER BY p.post_date DESC, p.id DESC
 LIMIT 1) AS p
 FROM topics t offset 0) s
 WHERE (p).id IS NOT NULL
 UNION ALL
 SELECT topic_name, (p).*, s.rcount + 1
 FROM (SELECT rp.topic_name,
 (SELECT p FROM posts p
 WHERE p.topic_id = rp.topic_id
 AND (p.post_date, p.id) <
(rp.post_date, rp.id)
 ORDER BY p.post_date DESC, p.id DESC
 LIMIT 1) AS p,
 rp.rcount
 FROM rp
 WHERE rp.rcount < 5 offset 0) s
 WHERE (p).id IS NOT NULL)
SELECT topic_name, username, post_date, title
FROM rp
ORDER BY topic_name, post_date DESC;

Who wants to maintain that?

CREATE INDEX
posts_topic_id_post_date_id_idx
ON posts USING btree
(topic_id, post_date DESC, id DESC);

 Sort (cost=1943.52..1945.25 rows=690 width=104)
 (actual time=3.490..3.503 rows=95 loops=1)
 Sort Key: rp.topic_name, rp.post_date
 Sort Method: quicksort Memory: 32kB
 CTE rp
 -> Recursive Union (cost=0.00..1897.19 rows=690 width=68)
 (actual time=0.077..2.280 rows=95 loops=1)
 -> Subquery Scan on s (cost=0.00..27.34 rows=20 width=41)
 (actual time=0.074..0.437 rows=19 loops=1)
 Filter: ((s.p).id IS NOT NULL)
 Rows Removed by Filter: 1
 -> Seq Scan on topics t (cost=0.00..27.14 rows=20 width=13)
 (actual time=0.066..0.397 rows=20 loops=1)
 SubPlan 1
 -> Limit (cost=0.42..1.30 rows=1 width=66)
 (actual time=0.016..0.016 rows=1 loops=20)
 -> Index Scan using posts_topic_id_post_date_id_idx
on posts p
 (cost=0.42..6729.50 rows=7671 width=66)
 (actual time=0.015..0.015 rows=1 loops=20)
 Index Cond: (topic_id = t.id)
 -> Subquery Scan on s_1 (cost=0.00..185.60 rows=67 width=68)
 (actual time=0.032..0.349 rows=15 loops=5)
 Filter: ((s_1.p).id IS NOT NULL)
 -> WorkTable Scan on rp rp_1 (cost=0.00..184.77 rows=67 width=52)
 (actual time=0.028..0.316 rows=15
loops=5)
 Filter: (rcount < 5)
 Rows Removed by Filter: 4
 SubPlan 2
 -> Limit (cost=0.42..2.69 rows=1 width=66)
 (actual time=0.017..0.017 rows=1 loops=76)
 -> Index Scan using posts_topic_id_post_date_id_idx
on posts p_1
 (cost=0.42..5799.82 rows=2557 width=66)
 (actual time=0.016..0.016 rows=1 loops=76)
 Index Cond: ((topic_id = rp_1.topic_id) AND
 (ROW(post_date, id) <
ROW(rp_1.post_date, rp_1.id)))
 -> CTE Scan on rp (cost=0.00..13.80 rows=690 width=104) (actual
time=0.082..2.432 rows=95 loops=1)
 Total runtime: 3.698 ms

 Sort (cost=1943.52..1945.25 rows=690 width=104)
 (actual time=3.490..3.503 rows=95 loops=1)

 ...

 Total runtime: 3.698 ms

 LATERAL 


SELECT t.name,
 p.username,
 p.post_date,
 p.title
FROM topics t
LEFT JOIN LATERAL
 (SELECT username, post_date,
title
 FROM posts
 WHERE topic_id = t.id
 ORDER BY post_date DESC
 LIMIT 5) p ON true
ORDER BY t.name, p.post_date DESC;

SELECT t.name,
 p.username,
 p.post_date,
 p.title
FROM topics t
LEFT JOIN LATERAL
 (SELECT username, post_date,
title
 FROM posts
 WHERE topic_id = t.id
 ORDER BY post_date DESC
 LIMIT 5) p ON true
ORDER BY t.name, p.post_date DESC;

SELECT t.name,
 p.username,
 p.post_date,
 p.title
FROM topics t
LEFT JOIN LATERAL
 (SELECT username, post_date,
title
 FROM posts
 WHERE topic_id = t.id
 ORDER BY post_date DESC
 LIMIT 5) p ON true
ORDER BY t.name, p.post_date DESC;

 Sort (cost=102.17..102.42 rows=100 width=31)
 (actual time=0.601..0.610 rows=96 loops=1)
 Sort Key: t.name, posts.post_date
 Sort Method: quicksort Memory: 32kB
 -> Nested Loop Left Join
 (cost=0.42..98.85 rows=100 width=31)
 (actual time=0.044..0.403 rows=96 loops=1)
 -> Seq Scan on topics t
 (cost=0.00..1.20 rows=20 width=13)
 (actual time=0.009..0.012 rows=20
loops=1)
 -> Limit (...rows=5...) (...rows=5...)
 -> Index Scan using ... on posts
 (...rows=7671...)
(...rows=5...)
 Index Cond: (topic_id =
t.id)
 Total runtime: 0.660 ms

 Sort (cost=102.17..102.42 rows=100 width=31)
 (actual time=0.601..0.610 rows=96 loops=1)
 Sort Key: t.name, posts.post_date
 Sort Method: quicksort Memory: 32kB
 -> Nested Loop Left Join
 (cost=0.42..98.85 rows=100 width=31)
 (actual time=0.044..0.403 rows=96 loops=1)
 -> Seq Scan on topics t
 (cost=0.00..1.20 rows=20 width=13)
 (actual time=0.009..0.012 rows=20
loops=1)
 -> Limit (...rows=5...) (...rows=5...)
 -> Index Scan using ... on posts
 (...rows=7671...)
(...rows=5...)
 Index Cond: (topic_id =
t.id)
 Total runtime: 0.660 ms

 Sort (cost=102.17..102.42 rows=100 width=31)
 (actual time=0.601..0.610 rows=96 loops=1)
 Sort Key: t.name, posts.post_date
 Sort Method: quicksort Memory: 32kB
 -> Nested Loop Left Join
 (cost=0.42..98.85 rows=100 width=31)
 (actual time=0.044..0.403 rows=96 loops=1)
 -> Seq Scan on topics t
 (cost=0.00..1.20 rows=20 width=13)
 (actual time=0.009..0.012 rows=20
loops=1)
 -> Limit (...rows=5...) (...rows=5...)
 -> Index Scan using ... on posts
 (...rows=7671...)
(...rows=5...)
 Index Cond: (topic_id =
t.id)
 Total runtime: 0.660 ms

 Sort (cost=102.17..102.42 rows=100 width=31)
 (actual time=0.601..0.610 rows=96 loops=1)
 Sort Key: t.name, posts.post_date
 Sort Method: quicksort Memory: 32kB
 -> Nested Loop Left Join
 (cost=0.42..98.85 rows=100 width=31)
 (actual time=0.044..0.403 rows=96 loops=1)
 -> Seq Scan on topics t
 (cost=0.00..1.20 rows=20 width=13)
 (actual time=0.009..0.012 rows=20
loops=1)
 -> Limit (...rows=5...) (...rows=5...)
 -> Index Scan using ... on posts
 (...rows=7671...)
(...rows=5...)
 Index Cond: (topic_id =
t.id)
 Total runtime: 0.660 ms

unnest() for JSON

SELECT name, j->'vars'->g AS vars
FROM (VALUES ('hello', '{"vars": [1, 2, 3]}'::json),
 ('world', '{"vars": [4, 5]}'::json))
v(name, j),
 LATERAL generate_series(0, json_array_length(j-
>'vars')-1) g;

name vars

hello 1

hello 2

hello 3

world 4

world 5

Table Permissions

SELECT c.oid::regclass, x.*
FROM pg_class c,
 aclexplode(c.relacl) x
WHERE c.oid =
'pg_class'::regclass;

oid grantor grantee privilege_type is_grantable

pg_class 10 0 SELECT f

Questions?

About Me

Vik Fearing

2ndQuadrant France

irc: xocolatl

twitter: @pg_xocolatl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

