Jun 27th, 2008

PL/Perl

Los Angeles PostgreSQL
User's Group

by Juan J. Natera



Outline

1. Perl
2. Installing PL/Perl
. From source
. From binaries
3. Using PL/Per]
. Necessary Perl
. Writing functions
. Using SQL inside your functions
. Sharing data between function calls
4. More Information



Perl

. Programming language.



Perl

. Programming language.
. Created by Larry Wall in 1986.



Perl

. Programming language.

. Created by Larry Wall in 1986.

. Ubiquitous, it's available in all modern
Unix-like operating systems.



Perl

. Programming language.
. Created by Larry Wall in 1986.
. Ubiquitous, it's available in all modern

Unix-like operating systems (and
Windows too).



Perl

. Programming language.

. Created by Larry Wall in 1986.

. Ubiquitous, it's available in all modern
Unix-like operating systems (and
Windows too).

. CPAN, more libraries than you can
shake a stick at.



Perl

. Programming language.

. Created by Larry Wall in 1986.

. Ubiquitous, it's available in all modern
Unix-like operating systems (and
Windows too).

. CPAN, more libraries than you can
shake a stick at.

. Currently at version 5.10, includes
many features brought from Perl 6.



Installing PL/Perl
From source

S tar -xvzf postgresqgl-8.3.3.tar.gz

$ ./configure --prefix=/usr/local --with-perl
S make

# make install



Installing PL/Perl
From binaries (Debian)

# aptitude install postgresql-8.1 \
postgresgl-client-8.1 \
postgresql-plperl-8.1



Enabling PL/Perl

. Enabling it globally:

S createlang plperl templatel



Enabling PL/Perl

. Enabling it globally:

S createlang plperl templatel

. Enabling it per database:

S createlang plperl lapugdemo



Enabling PL/Perl

. Enabling it globally:

S createlang plperl templatel

. Enabling it per database:

S createlang plperl lapugdemo

Or:

S psgl lapugdemo
lapugdemo# CREATE LANGUAGE plperl



Necessary Perl

. Perl Datatypes
. Subroutines
. References



Perl Datatypes

# Scalars

my $i = 0;
my $city = 'Pasadena’;



Perl Datatypes

# Scalars

my $i = 0;
my $city = 'Pasadena’;

# Arrays

my @universities = (‘Caltech’, 'UCLA', 'USC');
print $universities[0];



Perl Datatypes

# Scalars

my $i = 0;
my $city = 'Pasadena’;

# Arrays

my @universities = (‘Caltech’, 'UCLA', 'USC');
print $universities[0];

# Hashes

my %students = ('Caltech' => 23456, 'UCLA' => 12345);
print $students{'Caltech'};



N OO s WD R O

Perl Subroutines

# find number in an array
sub find {
my ($number, @array) = @ ;
foreach my $i (@array) {
return Snumber if (Snumber == $1);

}

return undef;

}



= W NPk O

Perl References

# creating a reference to a scalar
my Sfoo = 5;

my Sref = \$foo;

print “$foo\n”;

print “Sref\n”;



Perl References

0 # creating a reference to a scalar
1 my S$Sfoo = 5;

2 my Sref = \$foo;

3 print “$foo\n”;

4 print “Sref\n”;

Prints:

5

SCALAR(0x504£60)



Perl References

0 # creating a reference to a scalar
1 my S$Sfoo = 5;

2 my Sref = \$foo;

3 print “$foo\n”;

4 print “Sref\n”;

5 # Dereference it

6 print “${Sref}\n”;

Prints:

5

SCALAR(0x504£60)
5



o O WDN P O

Perl References

# creating a reference to an array
my @foo = (5, 7, 9, 11);

my S$ref = \@foo;

print “@foo\n”;

print “Sref\n”;

# Dereference it

print “${Sref}i\n”;



Perl References

0 # creating a reference to an array
1l my @foo = (5, 7, 9, 11);

2 my Sref = \@foo;

3 print “@foo\n”;

4 print “Sref\n”;

5 # Dereference it

6 print “${Sref}\n”;

Prints:

57 9 11

ARRAY (0x504£60)

Not a SCALAR reference at line X # Oops!



Perl References

0 # creating a reference to an array
l my @foo = (5, 7, 9, 11);

2 my Sref = \@foo;

3 # Dereference the whole array

4 print “@{Sref}\n”;

5 # Dereference a single element

6 print Sref->[0], “\n";

Prints:

5 7 9 11

5



Perl References

0 # creating a reference to an hash

1 my %foo = ('Los Angeles' => 'LAX', \
'New York' => 'JFK');

2 my Sref = \%foo;

3 print Sref->{'Los Angeles'}, “\n”;

Prints:

LAX



Perl References

# anonymous arrays
my Sarrayref = [1, 2, 3, 4, 5];

# anonymous hashes
my Shashref = { 'Foo' => 1, 'Bar' => 2};



PL/Perl

CREATE FUNCTION funcname (argument-types) \
RETURNS return-type AS S$S

# PL/Perl function body
$$ LANGUAGE plperl;



PL/Perl

A sample function:

CREATE FUNCTION reverse (TEXT) RETURNS TEXT AS
S

my ($string) = @ ;

my @symbols = split //, $string;

return join ('', reverse (@symbols);
$$ LANGUAGE plperl;



PL/Perl

A composite type function:

CREATE OR REPLACE FUNCTION tax (orders) RETURNS
float AS SS

my ($o0) = @_;
return sprintf(“%.2f",
So->{totalamount} - So->{netamount}
) i
S$S LANGUAGE plperl;



PL/Perl

Returning a composite type:

CREATE TYPE order with tax AS (orderid integer,
tax numeric(12,2));

CREATE OR REPLACE FUNCTION owtax (orders)
RETURNS order_with_tax AS SS

my ($o) = @ ;

return {
orderid => $o->{orderid},
tax => sprintf(“%.2f",
So->{totalamount} - So->{netamount}

)
}i
S$S LANGUAGE plperl;



PL/Perl

Returning a set of rows:

CREATE OR REPLACE FUNCTION order set()

RETURNS SETOF order w tax
return next({ orderid
return next({ orderid
return next({ orderid
return next({ orderid
return undef;

SS LANGUAGE plperl;

AS $S

=>

1

2
3
4

4

4

-

’

tax
tax
tax
tax

12.27});
3.89});
4.65});
9.78});



PL/Perl

Running gueries inside your functions:

CREATE OR REPLACE FUNCTION nlargest(INTEGER) RETURNS SETOF order w_tax AS $S
return undef unless(@_ && $_[0] > 0);
my Sresult = spi exec_query('SELECT * FROM orders ORDER BY totalamount DESC LIMIT '.$ [0]);
foreach (@{Sresult->{rows}}) {
return_next({
orderid => $ ->{order id},
tax => gprintf("%.2f",
$§ ->{totalamount} - $ ->{netamount}
)
})i
}

return undef;

$$ LANGUAGE plperl;



PL/Perl

Sharing data between functions calls:

CREATE FUNCTION Set_it(TEXT) RETURNS TEXT AS S$$
my ($it) = @_;

$ SHARED{'it'} = $it;

return $it;

$$ LANGUAGE plperl;

CREATE FUNCTION get it() RETURNS TEXT AS $$
return $ SHARED{'it'};

$$ LANGUAGE plperl;



More information

http://www.postgresqgl.org/docs/8.3/interactive/plperl.html

http://www.postgresqgl.org/docs/8.3/interactive/xplang.html

http://www.cpan.org/modules/by-module/DBD/APILOS/



http://www.postgresql.org/docs/8.3/interactive/plperl.html
http://www.cpan.org/modules/by-module/DBD/APILOS/
http://www.postgresql.org/docs/8.3/interactive/xplang.html

