
Jun 27th, 2008

PL/Perl
Los Angeles PostgreSQL

User's Group

by Juan J. Natera

Outline

1. Perl
2. Installing PL/Perl

● From source
● From binaries

3. Using PL/Perl
● Necessary Perl
● Writing functions
● Using SQL inside your functions
● Sharing data between function calls

 4. More Information

Perl

● Programming language.

Perl

● Programming language.
● Created by Larry Wall in 1986.

Perl

● Programming language.
● Created by Larry Wall in 1986.
● Ubiquitous, it's available in all modern
Unix-like operating systems.

Perl

● Programming language.
● Created by Larry Wall in 1986.
● Ubiquitous, it's available in all modern
Unix-like operating systems (and
Windows too).

Perl

● Programming language.
● Created by Larry Wall in 1986.
● Ubiquitous, it's available in all modern
Unix-like operating systems (and
Windows too).

● CPAN, more libraries than you can
shake a stick at.

Perl

● Programming language.
● Created by Larry Wall in 1986.
● Ubiquitous, it's available in all modern
Unix-like operating systems (and
Windows too).

● CPAN, more libraries than you can
shake a stick at.

● Currently at version 5.10, includes
many features brought from Perl 6.

Installing PL/Perl
From source

$ tar ­xvzf postgresql­8.3.3.tar.gz
$./configure ­­prefix=/usr/local ­­with­perl
$ make
make install

Installing PL/Perl
From binaries (Debian)

aptitude install postgresql­8.1 \
postgresql­client­8.1 \
postgresql­plperl­8.1

Enabling PL/Perl

● Enabling it globally:

$ createlang plperl template1

Enabling PL/Perl

● Enabling it globally:

$ createlang plperl template1

● Enabling it per database:

$ createlang plperl lapugdemo

Enabling PL/Perl

● Enabling it globally:

$ createlang plperl template1

● Enabling it per database:

$ createlang plperl lapugdemo

Or:

$ psql lapugdemo
lapugdemo# CREATE LANGUAGE plperl

Necessary Perl

● Perl Datatypes
● Subroutines
● References

Perl Datatypes
Scalars

my $i = 0;
my $city = 'Pasadena';

Perl Datatypes
Scalars

my $i = 0;
my $city = 'Pasadena';

Arrays

my @universities = ('Caltech', 'UCLA', 'USC');
print $universities[0];

Perl Datatypes
Scalars

my $i = 0;
my $city = 'Pasadena';

Arrays

my @universities = ('Caltech', 'UCLA', 'USC');
print $universities[0];

Hashes

my %students = ('Caltech' => 23456, 'UCLA' => 12345);
print $students{'Caltech'};

Perl Subroutines

0 # find number in an array
1 sub find {
2 my ($number, @array) = @_;
3 foreach my $i (@array) {
4 return $number if ($number == $i);
5 }
6 return undef;
7 }

Perl References
0 # creating a reference to a scalar
1 my $foo = 5;
2 my $ref = \$foo;
3 print “$foo\n”;
4 print “$ref\n”;

Perl References
0 # creating a reference to a scalar
1 my $foo = 5;
2 my $ref = \$foo;
3 print “$foo\n”;
4 print “$ref\n”;

Prints:

5
SCALAR(0x504f60)

Perl References
0 # creating a reference to a scalar
1 my $foo = 5;
2 my $ref = \$foo;
3 print “$foo\n”;
4 print “$ref\n”;
5 # Dereference it
6 print “${$ref}\n”;

Prints:

5
SCALAR(0x504f60)
5

Perl References
0 # creating a reference to an array
1 my @foo = (5, 7, 9, 11);
2 my $ref = \@foo;
3 print “@foo\n”;
4 print “$ref\n”;
5 # Dereference it
6 print “${$ref}\n”;

Perl References
0 # creating a reference to an array
1 my @foo = (5, 7, 9, 11);
2 my $ref = \@foo;
3 print “@foo\n”;
4 print “$ref\n”;
5 # Dereference it
6 print “${$ref}\n”;

Prints:

5 7 9 11
ARRAY(0x504f60)
Not a SCALAR reference at line X # Oops!

Perl References
0 # creating a reference to an array
1 my @foo = (5, 7, 9, 11);
2 my $ref = \@foo;
3 # Dereference the whole array
4 print “@{$ref}\n”;
5 # Dereference a single element
6 print $ref­>[0], “\n”;

Prints:

5 7 9 11
5

Perl References
0 # creating a reference to an hash
1 my %foo = ('Los Angeles' => 'LAX', \
 'New York' => 'JFK');
2 my $ref = \%foo;
3 print $ref­>{'Los Angeles'}, “\n”;

Prints:

LAX

Perl References
anonymous arrays
my $arrayref = [1, 2, 3, 4, 5];

anonymous hashes
my $hashref = { 'Foo' => 1, 'Bar' => 2};

PL/Perl

CREATE FUNCTION funcname (argument­types) \
RETURNS return­type AS $$
 # PL/Perl function body
$$ LANGUAGE plperl;

PL/Perl

A sample function:

CREATE FUNCTION reverse (TEXT) RETURNS TEXT AS
$$
 my ($string) = @_;
 my @symbols = split //, $string;
 return join ('', reverse @symbols);
$$ LANGUAGE plperl;

PL/Perl
A composite type function:
CREATE OR REPLACE FUNCTION tax (orders) RETURNS
float AS $$

 my ($o) = @_;
 return sprintf(“%.2f”,
 $o­>{totalamount} ­ $o­>{netamount}
);
$$ LANGUAGE plperl;

PL/Perl
Returning a composite type:
CREATE TYPE order_with_tax AS (orderid integer,
tax numeric(12,2));

CREATE OR REPLACE FUNCTION owtax (orders)
RETURNS order_with_tax AS $$

 my ($o) = @_;
 return {
 orderid => $o­>{orderid},
 tax => sprintf(“%.2f”,
 $o­>{totalamount} ­ $o­>{netamount}
)
 };
$$ LANGUAGE plperl;

PL/Perl
Returning a set of rows:

CREATE OR REPLACE FUNCTION order_set()

RETURNS SETOF order_w_tax AS $$
 return_next({ orderid => 1, tax => 12.27});
 return_next({ orderid => 2, tax => 3.89});
 return_next({ orderid => 3, tax => 4.65});
 return_next({ orderid => 4, tax => 9.78});

return undef;
$$ LANGUAGE plperl;

PL/Perl
Running queries inside your functions:

CREATE OR REPLACE FUNCTION nlargest(INTEGER) RETURNS SETOF order_w_tax AS $$

return undef unless(@_ && $_[0] > 0);

my $result = spi_exec_query('SELECT * FROM orders ORDER BY totalamount DESC LIMIT '.$_[0]);

foreach (@{$result­>{rows}}) {

 return_next({

 orderid => $_­>{order_id},

 tax => sprintf("%.2f",

 $_­>{totalamount} ­ $_­>{netamount}

)

 });

}

return undef;

$$ LANGUAGE plperl;

PL/Perl
Sharing data between functions calls:
CREATE FUNCTION set_it(TEXT) RETURNS TEXT AS $$

my ($it) = @_;

$_SHARED{'it'} = $it;

return $it;

$$ LANGUAGE plperl;

CREATE FUNCTION get_it() RETURNS TEXT AS $$

return $_SHARED{'it'};

$$ LANGUAGE plperl;

More information

http://www.postgresql.org/docs/8.3/interactive/plperl.html

http://www.postgresql.org/docs/8.3/interactive/xplang.html

http://www.cpan.org/modules/by-module/DBD/APILOS/

http://www.postgresql.org/docs/8.3/interactive/plperl.html
http://www.cpan.org/modules/by-module/DBD/APILOS/
http://www.postgresql.org/docs/8.3/interactive/xplang.html

