

Copyright to PGConf US 2016 1

Brooklyn, New York 11201

PostgreSQL HA Database Clusters

through Containment
Le Quan Ha

Infrastructure Platforms, Database Group, BlackBerry, Waterloo, Ontario N2L 3L3, Canada

Telephone: +1-403-828-1846, Email: NLp.Sr@Shaw.ca

Abstract: The enormous amount of data flow has made Relation Database Management System the most important and

popular tools for persistence of data. While open-source RDBMS systems are not as widely used as proprietary systems

like Oracle databases, but over the years, systems like PostgreSQL have gained massive popularity. High-availability

database clusters (also known as HA clusters or failover clusters) are groups of computers that support server applications

that can be reliably utilized with a minimum of down-time. This article is an attempt to set a benchmark of PostgreSQL

high-availability databases in comparing the performance of same-containment keepalived-repmgr clusters against cross-

containment HAProxy-PgBouncer clusters. The result shows that our cross-containment HAProxy-PgBouncer is still a

significantly better performer with load balancing, healthcheck and its throughputs are improved from 0.346% to 9.454%

in compared to keepalived-repmgr. Also we would like to present I/O activities and CPU usage percentages between the

two kinds of PostgreSQL HA clusters.

Keywords: Altus cloud, cross containment, failover, HAProxy, healthcheck, high availability, keepalived, load

balancing, PgBouncer, PostgreSQL, repmgr, repmgrd.

I. INTRODUCTION

We are developing the Altus cloud that includes of around

20 network zones (16 productions zones, 2 laboratory zones

and 2 restricted pre-production zones.) The Altus cloud

stores information of various styles of databases such as

Oracle, PostgreSQL, Apache Cassandra,

MariaDB/MySQL, Elasticsearch and MS SQL*Server.

The PostgreSQL databases are currently ranked the 4th most

popular according to DB-Engines in 2015 [14]; it was

earlier ranked the 6th position by Emison, 2014 [16].

The PostgreSQL databases are developing into high-

availability clusters on around 15 zones of Saturn Ring

software, a storage system designed in such a way that the

Saturn staffs as well as the organization’s users feel

comfortable in using the software.

We saw the development of this project as an opportunity

for analysing the comparative performance of PostgreSQL

databases that are developing by keepalived-repmgr

clusters on the Saturn Ring software and the other research-

and-development PostgreSQL databases that are built by

HAProxy-PgBouncer cross-containment cluster.

The main focus of this paper is to analyse the performance

of the two kinds of systems namely Saturn Ring keepalived-

repmgr and R&D HAProxy-PgBouncer.

II. WHY KEEPALIVED-REPMGR AND HAPROXY-

PGBOUNCER

Keepalived-repmgr and HAProxy-PgBouncer are two of

the most popular high availability database clusters.

Keepalived-repmgr is the configuration for database

systems on the same containment (using one same subnet

for all of the database servers, thus on one same network

zone and same gateway,) while HAProxy-PgBouncer is the

cross-containment cluster in which back-end database

servers can be arranged on different containments by

different network zones thus each database server can be

assigned a different subnet and communicates to each other

through different gateways.

Keepalived-repmgr and HAProxy-PgBouncer are the

configurations that were selected based on the convenience

of the developers, available resources and the fact that the

expected project happens to use one same containment or

cross-containments in the database.

While comparing between Keepalived-repmgr and

HAProxy-PgBouncer architectures, we would like to

present our research of performance analysis in cloud

computing with the open-source PostgreSQL RDBMS.

A. Keepalived-repmgr

Keepalived is a routing software written in C. The main

goal of keepalived is to provide simple and robust facilities

for high-availability to our system and infrastructures.

High-availability is achieved employing VRRP protocol.

VRRP is a fundamental brick for failover. In addition,

keepalived implements a set of hooks to the VRRP finite

state machine providing low-level with high-speed protocol

interactions.

Repmgr is an open-source tool suite to manage replication

in a cluster of PostgreSQL servers. It provides tools to set

up standby servers, monitor replication, and perform

administrative tasks such as failover or manual switchover

operations. The repmgr tool has provided advanced support

for replication mechanisms.

B. HAProxy-PgBouncer

HAProxy (High Availability Proxy), is a popular open

source software TCP/HTTP Load Balancer and proxying

solution which can be run on Linux, Solaris, and FreeBSD.

Its most common use is to improve the performance and

mailto:NLp.Sr@Shaw.ca

Copyright to PGConf US 2016 2

Brooklyn, New York 11201

Fig. 1. Theoretical model of keepalived-repmgr cluster

reliability of a database cluster environment by distributing

the workload across multiple computing resources. It is

used in many high-profile environments GitHub, Imgur,

Instagram, and Twitter.

PgBouncer is a lightweight connection pooler for

PostgreSQL; there are three modes of pooling: session

pooling, transaction pooling and statement pooling.

PgBouncer has low memory requirements (by default 2K

per connection). This is due to the fact that PgBouncer does

not need to see full packet at once. It is not tied to one back-

end server, the destination databases can reside on different

hosts.

III. RELATED WORK

Database systems have strongly developed nonstop since

1980s through various authors Khoshafian, Copeland,

Jagodis, Boral and Valduriez, 1987 [29]; Abiteboul, Hull

and Vianu, 1995 [27]; Boncz and Kersten, 1999 [22];

Abadi, Madden and Ferreira, 2006 [11]; Abadi, Marcus,

Madden and Hollenbach, 2007 [8, 9]; Abadi, Myers,

DeWitt and Madden, 2007 [10]…

Many performance analysis researches between different

kinds of database systems have been developed for database

theory: Ailamaki, DeWitt, Hill and Skounakis, 2001 [1];

Dwivedi, Lamba and Shukla (2012) [2].

Performance of the most popular databases are compared in

timing durations of queries, the CPU usages and memory

costs. In 2011, Bassil measured through MS SQL Server

2008, Oracle 11g, IBM DB2, MySQL 5.5, and MS Access

2010 [36]. Lee (2013) compared performances of Oracle,

MySQL and SQL Server [17].

Semantic web databases that have been characterized by

read/write performances of RDF [18, 24, 25, 26] through

the Welcome project’s data [33]; of the Virtuoso Universal

Server 6 Open Source Edition of Erling and Mikhailov,

2009 [21]; of JENA [4, 15, 31]; of SPARQL by the BSBM

[5] and Bizer and Schultz, 2009 [6]… are also analyzed for

performance by Guo, Pan and Heflin, 2005 [37].

A special group of databases that provide a different model

for storage and retrieval of data from the tabular relations,

are NoSQL databases such as Apache Cassandra, HBase

and MongoDB. Their performances are compared to each

other by Datastax Corporation, 2013 and 2014 [12, 13];

Gansen, Huang, Liang and Tang, 2013 [38]… and they are

also compared to open-source MySQL database by Gupta

and Narsimha, 2015 [28].

Recently, cloud computing with databases has evolved as a

new computing paradigm, allowing end users to utilise the

resources on a demand-driven basis, unlike grid and cluster

computing which are the traditional approaches to access

resources. It is characterised by the 4V’s, such as Volume,

Velocity, Veracity and Variety by Gudivada, Rao and

Raghavan, 2014 [35]; Sandholm and Lee, 2014 [32];

Agrawal, Das and Abbadi, 2011 [7]; Naim, Yassin, Zamri

and Sarnin, 2011 [20]; and Vora, 2011 [19]…

Open-source RDBMS has been researched using MySQL

by Saikia, Joy, Dolma and Mary. R (2015) [3] and Kilintzis,

Beredimas and Chouvarda (2014) [34]; using Db4o by

Kulshrestha and Sachdeva (2014) [30]… and more

performance analysis was done for less popular open-

source databases such as MonetDB by Boncz, Zukowski

and Nes (2005) [23].

IV. PROPOSED METHODOLOGY

A. Keepalived-repmgr theoretical model

Fig 1 shows our theoretical model of keepalived-repmgr;

when the master fails, keepalived will switch the virtual IP

to the hot standby. At this time, the hot standby’s VRRP

instance of keepalived changes to MASTER state and a

notify_master script is automatically called to promote the

hot standby to be a new master.

There is a shared witness server in the cluster, it is important

to avoid a “split-brain” situation and control / decide to

failover to a privilege standby. The witness server is

essential to ensure that one network segment has a “voting

majority”, so other segments will know they are in the

minority and not attempt to promote a new master.

A witness server can be set up using repmgr witness create

and can run on a dedicated server or an existing node.

B. HAProxy-PgBouncer theoretical model

Fig 2 shows our theoretical model of the HAProxy-

PgBouncer cluster with load balancing.

When HAProxy-PgBouncer receives read requests from the

application, it has load balancing capability that distributes

these read-loads across multiple back-end database servers.

Load balancing aims to optimize resource use, maximize

throughput, minimize response time, and avoid overload

errors; it may increase reliability and availability through

redundancy.

Copyright to PGConf US 2016 3

Brooklyn, New York 11201

Fig. 2. Theoretical model of HAProxy-PgBouncer cluster engages to load balancing.

On the front-end, when HAProxy-1 server fails, keepalived

will switch the virtual IP to HAProxy-2. On the back-end,

when the master database fails, repmgrd (replication

manger watch-dog) will promote the hot standby to be new

master and a failover happens.

In HAProxy-PgBouncer, it makes sense to create a witness

server in conjunction with running repmgrd.

V. RESULTS

We use Apache JMeter v2.13 to create test plans of 1

million samples/each with the main formulae given below

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑅𝑒𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

(1)

𝐾𝐵/ sec =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝐴𝑣𝑔. 𝐵𝑦𝑡𝑒𝑠

1024

(2)

There are 6 performance tests by HTTP Requests: Read

Only without data execution; Read Only with data

execution; Simple Write with Inserts and Updates; Simple

Write with Deletes; Read Write with Selects, Inserts and

Updates; and Read Write with Selects and Deletes.

For each performance test, we report 8 graphs for

 Transactions per Second

 CPU Usages

 Active Threads

 Response Time

 Bytes Throughput over Time

 Response Times Percentiles

 Response Times vs Threads

 Transaction Throughput vs Threads

Altogether we obtained 48 performance charts for

keepalived-repmgr and 54 for HAProxy-PgBouncer, we

would like to report typical charts only. Then for each

cluster, we also observe the CPU usages of failovers.

A. Throughput performance of keepalived-repmgr

With further developments in replication functionality such

as cascading replication, timeline switching and base

backups via the replication protocol, the team has decided

to use PostgreSQL 9.4.1 and repmgr 3.0.1; the version of

keepalived is 1.2.16. All of the servers are on Ubuntu

14.04.1 LTS.

TABLE I
KEEPALIVED-REPMGR / JMETER

HTTP Request
Test

duration

Avg. Response

Time /sample
Throughput KB/sec

Avg. Bytes

/transaction

Avg. Latency

/transaction

Read Only without data execution 463.976s 27.494s 2,155.284 609.467 289.565 27.443

Read Only with data execution 478.775s 29.951s 2,088.664 8,063.858 3,953.432 29.909

Simple Write with Inserts and

Updates
753.529s 58.480s 1,327.089 376.119 290.219 58.418

Simple Write with Deletes 533.122s 31.481s 1,875.743 530.419 289.565 31.421

Read Write with Selects, Inserts

and Updates
981.059s 80.431s 1,019.307 288.666 289.995 80.372

Read Write with Selects and

Deletes
570.773s 37.486s 1,752.010 493.719 288.565 37.426

Copyright to PGConf US 2016 4

Brooklyn, New York 11201

We applied the keepalived-repmgr model for the Saturn

Ring software (written by python Django) for all over 15

production network zones on Altus cloud.

Our keepalived-repmgr throughputs are reported by Table I

– 0% error rates for all 6 million requests (no errors) and

performance charts are shown from Fig 3 to Fig 10.

Fig. 3. Keepalived-repmgr: Read Write with Selects, Inserts and Updates

- Transactions per Second

Fig. 4. Keepalived-repmgr: Read Write with Selects and Deletes - CPU

Usages

Fig. 5. Keepalived-repmgr: Simple Write with Deletes - Active Threads

Fig. 6. Keepalived-repmgr: Read Only with Data Execution - Response

Time

Fig. 7. Keepalived-repmgr: Simple Write with Inserts and Updates -

Bytes Throughput over Time

Fig. 8. Keepalived-repmgr: Read Only without Data Execution -

Response Times Percentiles

Fig. 9. Keepalived-repmgr: Read Write with Selects and Deletes -

Response Times vs Threads

Fig. 10. Keepalived-repmgr: Simple Write with Inserts and Updates -

Transaction Throughput vs Threads

A CPU usage chart for Failover is shown in Fig 11 as below,

in which the hot standby is promoted to be the new master.

Copyright to PGConf US 2016 5

Brooklyn, New York 11201

Fig. 11. Keepalived-repmgr: Failover CPU usages

B. Throughput performance of HAProxy-PgBouncer

clusters

We developed a cross-containment HAProxy-PgBouncer

cluster through the two separate network zones of the Altus

cloud. The HAProxy-1, HAProxy-2, hot standby and

witness servers are on the first laboratory zone while the

master and the async standby are on the second zone.

The tool versions are PostgreSQL 9.4.1, HAProxy 1.5.11,

keepalived 1.2.16, PgBouncer 1.5.5 and repmgr 3.0.1. All

of the servers are on Ubuntu 14.04.1 LTS.

Fig 12 shows our real implementation of the load balancing

for read requests with real observation shown in Fig 13 by

sysstat to verify that the read-loads are balanced through

back-end master, hot standby and async standby.

Performance are shown from Fig 14 to Fig 22 and the

throughput summary in Table II. For altogether 6 million

requests, error rates are 0%.

Fig. 12. Implementation of HAProxy-PgBouncer cluster

TABLE II
HAPROXY-PGBOUNCER / JMETER

HTTP Request
Test

duration

Avg. Response

Time /sample
Throughput KB/sec

Avg. Bytes

/transaction

Avg. Latency

/transaction

Read Only without data execution 423.901s 28.234s 2,359.041 662.477 287.565 28.228

Read Only with data execution 471.192s 28.215s 2,122.277 1,354.034 653.322 28.209

Simple Write with Inserts and

Updates
702.484s 55.893s 1,423.520 1,895.078 1,363.212 55.886

Simple Write with Deletes 521.546s 36.755s 1,917.376 540.319 288.565 36.749

Read Write with Selects, Inserts

and Updates
970.949s 77.564s 1,029.920 679.687 675.780 77.557

Read Write with Selects and

Deletes
568.803s 42.116s 1,758.078 626.928 365.157 42.110

Copyright to PGConf US 2016 6

Brooklyn, New York 11201

Fig. 13. Load balancing observed by sysstat on the master PGHADB1, the hot standby PGHADB2 and the async standby PGHADB3

Fig. 14. HAProxy-PgBouncer: Read Write with Selects, Inserts and

Updates - Transactions per Second

Fig. 15. HAProxy-PgBouncer: Read Write with Selects, Inserts and

Updates - Frontend CPU usages

Fig. 16. HAProxy-PgBouncer: Read Only with Data Execution -

Backend database server CPU usages on Load Balancing

Fig. 17. HAProxy-PgBouncer: Read Only without Data Execution -

Active Threads

Fig. 18. HAProxy-PgBouncer: Read Write with Selects and Deletes -

Response Time

Fig. 19. HAProxy-PgBouncer: Simple Write with Deletes - Bytes

Throughput over Time

Copyright to PGConf US 2016 7

Brooklyn, New York 11201

Fig. 20. HAProxy-PgBouncer: Simple Write with Deletes - Response

Times Percentiles

Fig. 21. HAProxy-PgBouncer: Simple Write with Inserts and Updates -

Response Times vs Threads

Fig. 22. HAProxy-PgBouncer: Simple Write with Inserts and Updates -

Transaction Throughput vs Threads

In order to process failovers when the master database fails,

both of the HAProxy farm failover mechanism and the

HAProxy auto-failover mechanism are set up.

The farm failover mechanism for HAProxy is applied to

make the read requests transparently continuous during

master failures. In order to continue write requests

transparently through master failures, HAProxy auto-

failover mechanism by healthcheck services using xinetd

(extended Internet daemon) are installed on port 5678 of all

back-end master, hot standby and async standby.

Fig. 23. HAProxy-PgBouncer: Failover Front-end CPU usages

Fig 23 and Fig 24 show the Front-end and Back-end CPU

usages during a failover of HAProxy-PgBouncer.

Fig. 24. HAProxy-PgBouncer: Failover Back-end CPU usages

VI. COMPARISON AND DISCUSSION

HAProxy-PgBouncer does not only include better cross-

containment and load balancing features than the

keepalived-repmgr cluster, but also the throughputs of

HAProxy-PgBouncer cluster are improved from 0.346% to

9.454% in compared to the keepalived-repmgr cluster as in

Table III.

TABLE III

THROUGHPUT IMPROVEMENTS OF HAPROXY-PGBOUNCER CLUSTER IN

COMPARED TO KEEPALIVED-REPMGR CLUSTER

HTTP Request
Throughput

improvement

Read Only without data execution 9.454%

Read Only with data execution 1.609%

Simple Write with Inserts and

Updates

7.266%

Simple Write with Deletes 2.220%

Read Write with Selects, Inserts and

Updates

1.041%

Read Write with Selects and Deletes 0.346%

VII. CONCLUSIONS

The purpose of this paper is to analyse the performance of

two popular high availability PostgreSQL clusters,

keepalived-repmgr and HAProxy-PgBouncer, in terms of

transaction throughputs.

The results show that HAProxy-PgBouncer improves the

throughputs from 0.346% to 9.454% performance than

keepalived-repmgr when executing one million HTTP

requests from JMeter. In all the test cases, the numbers of

transactions per second of HAProxy-PgBouncer are higher

when compared to keepalived-repmgr.

Keepalived-repmgr also does not offer cross-containment

and load balancing abilities. In Fig 4, the master database

server CPU usage is high 80% most of the time while in Fig

16, HAProxy shares the read-loads so that master and other

standbys’ CPU usages are close values.

HAProxy-PgBouncer also provides two different methods

to implement failovers: auto-failover and farm-failover.

Copyright to PGConf US 2016 8

Brooklyn, New York 11201

In our future work, we intend to investigate further the

failover analysis of the two clusters, at the present we

observe a difference of the HAProxy-PgBouncer cluster -

when the mater failure is detected by repmgrd, from the

keepalived-repmgr cluster in which the failure is detected

by keepalived.

ACKNOWLEDGMENT

Our deepest heartfelt thanks are given to Andrew

Achtenberg, David Berry, Hong Zhang, Manish Rajani,

Monir Iskarous, Sachin Agarwal and Shilpa Bhullar; and

also the Organizers of PGConf US 2016.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving

relations for cache performance”, the 27th International Conference
on Very Large Data Bases, pp. 169-180, 2001.

[2] A. K. Dwivedi, C. S. Lamba, and S. Shukla, “Performance Analysis

of Column Oriented Database versus Row Oriented Database”,
International Journal of Computer Applications (0975 – 8887), Vol.

50, No. 14, July 2012

[3] A. Saikia, S. Joy, D. Dolma, and R. Mary. R, “Comparative
Performance Analysis of MySQL and SQL Server Relational

Database Management Systems in Windows Environment”,

IJARCCE, Vol. 4, Iss. 3, pp. 160-164, Mar 2015.
[4] Apache Jena, https://jena.apache.org/

[5] BSBM V3.1 Results (April 2013), http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html

[6] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark”,

International Journal on Semantic Web and Information Systems
(IJSWIS), Vol. 5(2), pp. 1-24, 2009.

[7] D. Agrawal, S. Das, and A. E. Abbadi, “Big Data and Cloud

Computing: Current State and Future Opportunities”, in Proceedings
of the EDBT 2011/ACM, Uppsala, Sweden, Mar 2011.

[8] D. J. Abadi, “Column Stores for Wide and Sparse Data”, in CIDR,

pp. 292-297, Asilomar, CA, USA, 2007.
[9] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. “Scalable

semantic web data management using vertical partitioning”, the 33rd

International Conference on VLDB, pp. 411-422, 2007.
[10] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden,

“Materialization Strategies in a Column-Oriented DBMS”, in ICDE,

2007.
[11] D. J. Abadi, S. R. Madden, and M. C. Ferreira, “Integrating

Compression and Execution in Column-Oriented Database

Systems”, in SIGMOD, pp. 671-682, 2006.
[12] Datastax Corporation, “Introduction to Apache Cassandra”, white

paper, San Mateo, Calif., available at datastax.com, Jul 2013.

[13] Datastax Corporation, “The Modern Online application for the
Internet economy: 5 Key Requirements that Ensure Success”, white

paper, Santa Clara, Calif., available at datastax.com, 2014.

[14] DB-Engines.com, “DB-Engines Ranking of Relational DBMS”,
http://db-engines.com/en/ranking/relational+dbms, at Dec 2015.

[15] Fuseki,

http://jena.apache.org/documentation/serving_data/index.html
[16] J. M. Emison, “2014 State of Database Technology”, Information

Week, San Francisco, CA, Rep. R7770314, 2014.

[17] Lee J., “Oracle vs. MySQL vs. SQL Server: A Comparison of
Popular RDBMS”, available: https://blog.udemy.com/oracle-vs-

mysql-vs-sql-server/, Nov 2013.

[18] M. Horridge and S. Bechhofer, “The OWL API: A Java API for
OWL ontologies”, Semantic Web Journal, Vol. 2(1):11-21, 2011.

[19] M. N. Vora, “Hadoop-HBase for Large Scale Data”, in Proceedings

of the IEEE International Conference on Computer Science and
Network Technology, pp. 601-605, Dec 2011.

[20] N. F. Naim, A. I. M. Yassin, W. M. A. W. Zamri, and S. S. Sarnin,

“MySQL Database for Storage of Fingerprint Data”, IEEE UKSim,
Vol. 62, pp. 293-298, 2011.

[21] O. Erling and I. Mikhailov, “RDF Support in the Virtuoso DBMS”,

Networked Knowledge-Networked Media, Springer Berlin
Heidelberg, pp. 7-24, 2009.

[22] P. A. Boncz and M. L. Kersten, “MIL primitives for querying a

fragmented world”, VLDB, Vol. 8, Iss. 2, pp. 101-119, Oct 1999.

[23] P. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-

pipelining query execution”, in CIDR, pp. 225-237, 2005.
[24] P. Orduña, A. Almeida, U. Aguilera, X. Laiseca, D. López-de-Ipiña,

and A. G. Goiri, “Identifying Security Issues in the Semantic Web:

Injection attacks in the Semantic Query Languages”, JSWEB, Vol.
51, pp. 4529-4542, Valencia, Spain, Sep 2010.

[25] RAP - RDF API for PHP, http://wifo5-03.informatik.uni-

mannheim.de/bizer/rdfapi/
[26] RDF 1.1 Primer, http://www.w3.org/TR/rdf11-primer/

[27] S. Abiteboul, R. Hull, and V Vianu, “Foundations of Databases: The

Logical Level”, Addison-Wesley Longman, 1995.
[28] S. Gupta and N. Narsimha, “Performance Evaluation of Nosql-

Cassandra over Relational Data Store-MySQL for Bigdata”.

International Journal of Technology, Vol. 6(4), pp. 640-649, 2015.
[29] S. Khoshafian, G. Copeland, T. Jagodis, H. Boral, and P. Valduriez,

“A query processing strategy for the decomposed storage model”, in

ICDE, pp. 636-643, 1987.
[30] S. Kulshrestha and S. Sachdeva, “Performance Comparison for Data

Storage - Db4o and MySQL Databases”, the 7th International

Conference on Contemporary Computing (IC3), IEEE, pp. 166-170,
ISBN: 978-1-4799-5172-7, Noida, 2014.

[31] SPARQL 1.1 Overview, http://www.w3.org/TR/sparql11-overview/

[32] T. Sandholm and D. Lee, “Notes on Cloud computing principles”,
Journal of Cloud Computing: Advances, Systems and Applications,

Vol. 3(21), pp. 1-10

[33] The Welcome Project, available at http://www.welcome-project.eu
[34] V. Kilintzis, N. Beredimas, and I. Chouvarda, “Evaluation of the

performance of open-source RDBMS and triplestores for storing
medical data over a web service”, the 36th Annual International

Conference of the IEEE Engineering in Medicince and Biology

Society, pp. 4499-502, 2014
[35] V. N. Gudivada, D. Rao, and V. V. Raghavan, “Nosql Systems for

Bigdata Management”, in Proceedings of the 10th World Congress on

Services, IEEE, Vol. 42, pp.190-197, 2014.
[36] Y. Bassil, “A Comparative Study on the Performance of the Top

DBMS Systems”, Journal of Computer Science & Research, Vol. 1,

No. 1, pp. 20-31, Feb 2012.
[37] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL

Knowledge Base Systems”, Web Semantics: Science, Services and

Agents on the World Wide Web archive, Vol. 3(2-3):158-182, 2005.

[38] Z. Gansen, W. Huang, S. Liang, and Y. Tang, “Modelling MongoDB

with Relational Model”, in Proceedings of the Fourth International

Conference on Emerging Intelligent Data and Web Technologies,
IEEE, Vol. 25, pp. 115-121, 2013.

http://db-engines.com/en/ranking/relational+dbms
https://blog.udemy.com/oracle-vs-mysql-vs-sql-server/
https://blog.udemy.com/oracle-vs-mysql-vs-sql-server/
http://wifo5-03.informatik.uni-mannheim.de/bizer/rdfapi/
http://wifo5-03.informatik.uni-mannheim.de/bizer/rdfapi/
http://www.w3.org/TR/sparql11-overview/
http://www.welcome-project.eu/

