

Hierarchical data models in
Relational Databases

In RDBMS, R is for
RRelational. What's all

this hierarchal
nonsense?

Richard Broersma Jr.
Mangan Inc. (Systems Integrator)

PostgreSQL Enthusiast

Preview

 Controversy of Hierarchical data in Relational Databases
 Perceptions of Reality and Data modeling
 Logical ERDs for Generalization Hierarchies
 Exploring Physical implementations of logical ERDs

Controversy

 Network and Hierarchical database are
”things of the past.”

 Relational databases should be implemented
using entities and relationships described in
relational theory.

 Should Hierarchical modeling be avoided?

Basics of RDB Modeling

 Thinking in terms of
data modeling
 Entities
 Relationships
 Entity types

 Implement using 3
Normal forms.

Employ

Companies

People

Employee
Types

(0,1)

(1,N)

(0,N)

Perceptions of Reality

 Our Perceptions
 Entities & Relationships

 Classifications
 Taxonomy

 How do the
attributes of similar
type of entities
differ

Short-fall of Entity Types
 Employee Types table

 Can't express attribute
similarities or differences
of similar types.

 Can't define relationships
between people of
related types

Employ Employee
Types

(0,N)

Employee Types
Electrician Does Electrical Work
Engineer Does Engineering
Manager Manages others
President Presides over a company
Welder Welds

Employ
ABC TED Welder
ABC SANDY President

ACME RON Electrician
ACME JILL Engineer

BP DAVE Manager

Conclusion: If we need to know about the extended attributes of entity types or the
relationships between entity types, Hierarchical data modeling must be implemented.

Enter - ERD for Hierarchical Data
 Generalization Hierarchy

(logical modeling):
 Defines hierarchical constraints

for hierarchical mapping.
 Grouping of similar entity types.
 Similarities and differences are

defined.
 Relationships can be created

between entities of any
(sub)type.

type

subtype A Subtype B Subtype C

Sub-subtype AS
pe

ci
fic

 -
G

en
er

ic (T,E)

(P,E)

ERD - Hierarchical Constraints
 C

1
 Property

 {T} Total Coverage
 {P} Partial Coverage

 C
2
 Property

 {E} Exclusive Coverage
 {O} Overlapping Coverage

(C
1
, C

2
) Coverage Properties

Animals

Carnivore Herbivore

ERD - Entity type Groupings

 Entity types having equal
attributes are grouped together.

 Similarities and differences are
defined.

Animals

Carnivores Herbivores

(T, O)

Animals
id weight

Bear-1 bear 500
Sheep-2 sheep 100
Wolf-3 wolf 120
Deer-4 deer 240
Puma-5 puma 200

animalcode

Carnivores
id weight

Bear-1 bear 500 salmon
Wolf-3 wolf 120 sheep

Puma-5 puma 200 deer

animalcode favoritePrey
Herbivores

id weight
Bear-1 bear 500 berries

Sheep-2 sheep 100 grass
Deer-5 deer 240 grass

animalcode favoriteVegi

id weight
Bear-1 bear 500 salmon berries

Omnivores (implied by Overlapping)
animalcode favoritePrey favoriteVegi

ERD - Entity type Groupings

 Beware of the “platypus”!
 Valid criticisms of G/H

exist.
 Some entities will map

to most of the
hierarchical attributes
but not all.

 Careful consideration
required to minimize
platypus affect.*

Animals

Avians Mammals

(T, O)

*If practical, G/H redesign can eliminate most “Platypuses”.

Marsupials

ERD – Entity type Relationships

 Complex Relationships
are possible between
sub types

Animals

Carnivores Herbivores

(T, O)

Mauls

Fears

(0
,n

)

(0,n)

(1,n)(1,n)

Maulings
carnivoreid animalid Mauling-date

Bear-1 Wolf-3 01/15/08
Bear-1 Deer-4 07/12/07
Wolf-3 Sheep-2 09/22/07

Fears
carnivoreid animalid

Deer-4 Wolf-3
Deer-4 Puma-5
Deer-4 Bear-1

Sheep-2 Wolf-3
Sheep-2 Puma-5
Bear-1 Bear-6

Physical Implementations

 There are 5 physical designs for implementing
logical Generalization Hierarchies

 Each physical design varies in the G/H
features that its able to implement

 Entity-Attribute-Value table (EAV) (Relational purists favorite)
 Null-able Attributes (NA) table (Happens overtime)
 Vertical Disjunctive Partitioning (VDP) table partitioning (My favorite)
 Horizontal Disjunctive Partitioning (HDP) table (i.e. PostgreSQL Table inheritance)
 Null-able attributes – EAV hybrid Table (Worst Design Ever – know it to avoid it)

Good Design Guidelines

 Regardless of the physical implementation:
 Always include a type column associated with the

primary key.
 This is still the best way to identify an entities or

relationships type.
 CHECK(...) Constraints can then be implemented based on

the entity type *
 This will prevent data corruption at the server level that could

be caused by application bugs or lazy users.

* A tree that mirrors the structure of the Generalization Hierarchy can be used in
coordination with a custom lookup function can replace lengthy check constraints.

Entity Attribute Value (EAV)

 Physical Implementation:

Animals

Carnivores Herbivores

(T, O)

Animals

Animal
Attributes

has

Attribute
Typesis a

(0, n)

(1, 1)

(1, 1) (0, n)

Animal
Typesis a

(0, n)(1, 1)

EAV Table - DDL
CREATE TABLE Animaltypes(
 animalcode VARCHAR(20) PRIMARY KEY,
 description TEXT NOT NULL DEFAULT '');

CREATE TABLE Animals (
 animal_id VARCHAR(20) PRIMARY KEY,
 animalcode VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 weight NUMERIC(7, 2) CHECK(weight > 0));

CREATE TABLE Attributetypes(
 attributecode VARCHAR(20) PRIMARY KEY,
 description TEXT NOT NULL DEFAULT '');

CREATE TABLE Animalattributes(
 animal_id VARCHAR(20) REFERENCES Animals(animal_id)
 ON UPDATE CASCADE ON DELETE CASCADE,
 attribute VARCHAR(20) REFERENCES Attributetypes(attributecode)
 ON UPDATE CASCADE,
 att_value VARCHAR(1000) NOT NULL,

 PRIMARY KEY (animal_id, attribute));

EAV Table - Consideration
 Good
 Provides a flexible mechanism to record the

attributes associated with any entity.

 The flexible mechanism eliminates the
possibility of “platypuses”.

 This EAV design requires almost no
consideration of the nature of the applicable
hierarchical data and requires very little time to
implement (cookie cutter)

 Bad
 Users or Application logic becomes responsible

to ensuring that all entities of a specific type will
have the required associated attributes. (no
DDL server constraints will work)

 The EAV table doesn't provide a mechanism to
create relationships between entities of different
sub-types.

 The EAV table does nothing to provide a
grouping of related entity types.

 The EAV table uses a VARCHAR column for all
attribute values regardless if Dates, timestamps,
integers, numerics or booleans would be more
appropriate

 The isn't a way to prevent bad data-entry. For
example nothing would prevent a user from
entering 'I like peanut butter.' for the attribute
value for Birthday

Null-able Attributes (NA) Table

 Physical Implementation:

Animals

Carnivores Herbivores

(T, O)

Animals Animal
Typesis a

(0, n)(1, 1)

(NA) Table - DDL
CREATE TABLE Animaltypes(
 animalcode VARCHAR(20) PRIMARY KEY,
 description TEXT NOT NULL DEFAULT '');

CREATE TABLE Animals (
 animal_id VARCHAR(20) PRIMARY KEY,
 animalcode VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 weight NUMERIC(7, 2) CHECK(weight > 0),

 favoriteprey VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE
 CHECK(CASE WHEN animalcode=ANY('Bear', 'Wolf', 'Puma')
 THEN favoriteprey IS NOT NULL
 ELSE favoriteprey IS NULL END)
 favoritevegi VARCHAR(20) REFERENCES Vegitypes (Vegicode)
 ON UPDATE CASCADE
 CHECK(CASE WHEN animalcode=ANY('Bear', 'Deer', 'Sheep')
 THEN favoritevegi IS NOT NULL
 ELSE favoritevegi IS NULL END)
);

NA Table - Consideration
 Good
 The most Common Hierarchical Table I've seen.

Is that a good thing?

 Provides a flexible mechanism to record the
attributes associated with any entity.

 All attributes values can be constrained with
foreign keys.

 This NA design requires almost not
consideration of the nature of the applicable
hierarchical data. Hierarchical attributes are
added via DDL as they are encounter during
runtime.

 Bad
 The NA table doesn't provide a mechanism to

create relationships between entities of different
sub-types.

 The NA table does nothing to provide a
grouping of related entity types.

 Fewer Checks required, but too many check
constraints can still hurt INSERT performance

 Tuples in the table can get to be too big with
many-many unused nulled columns.

 The concept of null gets obscured.

 (VDP) Table

 Physical Implementation:

Animals

Carnivores Herbivores

(T, O)

Animals

Animal
Typesis a

(0, n)(1, 1)

Carnivores Herbivores

is ais a

is a

(0, 1)

(1, 1)(1, 1)

(0, 1)

(VDP) Table - DDL
CREATE TABLE Animals (
 animal_id VARCHAR(20) UNIQUE NOT NULL,
 animalcode VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 weight NUMERIC(7, 2) CHECK(weight > 0),

 PRIMARY KEY (animal_id, animalcode)
 --RI to handle denormalization of sub-tables);
CREATE TABLE Carnivore (
 animal_id VARCHAR(20) UNIQUE NOT NULL,
 animalcode VARCHAR(20) NOT NULL
 CHECK(animalcode = ANY('Bear', 'Wolf', 'Puma')),
 favoriteprey VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 PRIMARY KEY (animal_id, animalcode),
 FOREIGN KEY (animal_id, animalcode) REFERENCES Animals(animal_id, animalcode)
 ON UPDATE CASCADE ON DELETE CASCADE,
 --RI to handle denormalization of animalcode);

VDP Table - Consideration
 Good
 All attributes values can be constrained with

foreign keys.

 Almost all logical ERD concepts of
Generalizations Hierarchies can be
implemented with this design.

 Allow for relationships between all levels of
subtype entitles

 Allows for entity type grouping of related entities

 Bad
 Checks only required for Entity type field, but

too many check constraints can still hurt
INSERT performance

 VDP cannot enforce overlapping when required
by entity type.

 Additional Application logic required to handle
multiple INSERTs and UPDATEs to various
(sub)type tables

 Requires some denormalization to enforce data
integrity. Referential Integrity handles this
problem.

 This design requires the designer to be well
versed in the domain that is being modeled

 (HDP) Table

 Physical Implementation:

Animals

Carnivores Herbivores

(T, O)

Animals
Animal
Typesis a

(0, n)(1, 1)

Carnivores

Herbivores is a

is a

is a

(1, 1)

(1, 1)

(0, n)

(0, n)

(HDP) Table - DDL
CREATE TABLE Animals (
 animal_id VARCHAR(20) PRIMARY KEY,
 animalcode VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 weight NUMERIC(7, 2) CHECK(weight > 0));

CREATE TABLE Carnivore (
 favoriteprey VARCHAR(20))
INHERITS(Animals);
 ALTER TABLE Carnivore
ADD CONSTRAINT Cornivore_animalcode_check_iscarnivore
 CHECK(animalcode = ANY('Bear', 'Wolf', 'Puma'));
CREATE TABLE Herbivore (
 favoritevegi VARCHAR(20))
INHERITS(Animals);
 ALTER TABLE Herbivore
ADD CONSTRAINT Herbivore_animalcode_check_isHerbivore
 CHECK(animalcode = ANY('Bear', 'Deer', 'Sheep'));

HDP Table - Consideration
 Good
 All attributes values can be constrained with

foreign keys.

 Allow for relationships between hierarchical leaf
entitles

 Allows for entity type grouping of related entities

 The application logic is simplified since all
accesses to sub-entities are to a single table.

 Bad
 Checks only required for Entity type field, but

too many check constraints can still hurt
INSERT performance

 HDP correctly implement overlapping when
required by entity type.

 No relationships can be drawn between various
levels of the G/H.

 SLOW Sequential Scans are the only way to
search the Root or Branch nodes of the
hierarchy since scans on these tables are based
on UNION ALL queries.

 Uniqueness cannot be enforced across the
hierarchy.

 This design requires the designer to be well
versed in the domain that is being modeled

 (NA – EAV) Hybrid Table

 Physical Implementation:

Animals

Carnivores Herbivores

(T, O)

Animals Animal
Typesis a

(0, n)(1, 1)

(NA – EAV) Table - DDL
CREATE TABLE Animaltypes(
 animalcode VARCHAR(20) PRIMARY KEY,
 description TEXT NOT NULL DEFAULT '');

CREATE TABLE Animals (
 animal_id VARCHAR(20) PRIMARY KEY,
 animalcode VARCHAR(20) REFERENCES Animaltypes(animalcode)
 ON UPDATE CASCADE,
 column1 VARCHAR(255), --The application maps the attributes of each
 column2 VARCHAR(255), --entity type to these intentionally vague
 column3 VARCHAR(255), --columns. Each entity type will have a unique
 column4 VARCHAR(255), --mapping for column1 thru column100.
 column5 VARCHAR(255),
 column6 VARCHAR(255), --Unmapped columns not needed by an entity type
 column7 VARCHAR(255), --may be treated as custom fields that the users
 column8 VARCHAR(255), --may use any way they see fit.
 -- ...
 column100 VARCHAR(255)
);

NA – EAV Table - Consideration
 Good
 Provides a flexible mechanism to record the

attributes associated with any entity.

 The flexible mechanism eliminates the
possibility of “platypuses”.

 Users or Application logic becomes responsible
to ensuring that all entities of a specific type will
have the required associated attributes. (no
DDL server constraints will work)

 The NAEAV table doesn't provide a mechanism
to create relationships between entities of
different sub-types.

 The NAEAV table does nothing to provide a
grouping of related entity types.

 The NAEAV table uses a VARCHAR column for
all attribute values regardless if Dates,
timestamps, integers, numerics or booleans
would be more appropriate

 The isn't a way to prevent bad data-entry. For
example nothing would prevent a user from
entering 'I like peanut butter.' for the attribute
value for Birthday

 Table design concept is badly de-normalized.

 Bad
 These VARCHAR columns have no meaning.

Each entity can map a column for a completely
unrelated attribute.

 The Application mapping becomes a major
source of data corruption bugs if mapping isn't
cleanly implemented or if entity type changes
are required overtime.

 If unmapped columns are exposed to the users
as custom column, there is not way to ensure
that various users will be consistent when
implementing these columns.

Bibliography

Works Cited

Batini, Carol, Stefano Ceri, and Shamkant B. Navathe. Conceptual Database Design: an Entity-Relationship Approach.

Redwood City, California 94065: The Benjamin/Cummings Company; Inc., 1992. 1-470.

Celko, Joe. SQL FOR SMARTIES: Advanced SQL Programming. 3rd ed. San Francisco California 94111: Morgan Kaufmann

Publications, 2005. 1-838.

Questions?

Ya, what's
all this

hierarchal
nonsense?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

