

PostgreSQL Logging

Gabrielle Roth
EnterpriseDB

PgOpen 18 Sep 2012

...not just for lumberjacks

photo by U.S. Fish and Wildlife Service - Midwest Region. Creative Commons license.

Why you want logs

Why you want logs

Why you want logs

Why you want logs

 Historical record
 starts, stops, reloads of config file
 who's connected
 data or schema changes

 Troubleshooting aid
 Legal requirement

The Basics

photo from brittgow (flickr). Creative Commons license.

The Basics:

How to get logs
Easy!

 make this change to postgresql.conf
 ...and restart

The Basics:
A few more things you need to know...

 Find your logs at:
 $PGDATA/pg_log/postgresql-[timestamp].log
 aka: log_directory and log_filename

The Basics:
A few more things you need to know...

 #log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'

 #log_rotation_age = 1d

 #log_rotation_size = 10MB

 don't forget to clean up!

Voila.

The Basics:
Recap

...now let's customize it a bit

photo © Shanti Isenagle. Used with permission.

Logging-related GUCs in
postgresql.conf

 Three sections:
 Where to Log
 When to Log
 What to Log
 ...and some random locations.

 Defaults are pretty conservative

 Most parameters require pg_ctl reload; others require
restart (noted in postgresql.conf)

Customize:

What to Log

 who connected/disconnected
 log_connections/log_disconnections

 what's changed
 log_statement

 apply message prefix*
 log_line_prefix

Customize:
who connected

Customize:
who connected

Customize:
what's changed

Customize:
what's changed

Customize:
add a message prefix

Customize:
add a message prefix

Customize:
resolve the hostname

Customize:

What to log recap

Customize:

When to Log
 message levels

 log_min_messages
 client_min_messages
 log_min_error_statement

 long queries
 log_min_duration_statement

Customize:

Message Levels

Let's talk about the levels first.

DEBUG, INFO, NOTICE, WARNING, ERROR,
LOG, FATAL, PANIC.

(or something like that.)

Customize:

log_ and client_min_messages,
log_min_error_statement

the defaults are probably fine.

Customize:

Long Queries

log_statement +
log_min_duration_statement

Customize:

Where to log
 You have four choices:

 eventlog
 csvlog
 syslog
 stderr

Made with LucidChart. Grossly oversimplified. Not for production use.

Customize:

eventlog (Windows)
 get service start/stop messages by default
 edit postgresql.conf
 restart via Services menu OR

 reload via PgAdmin

 use Event Viewer to view
 set up a custom filter to reduce annoyance

More help? see me afterwards or at the code sprint.

Customize:

stderr (review)

Customize:

stderr
 make sure the pg user has perms on the log

directory, otherwise:

 ...and the database won't start.

Customize:

stderr
 Pros:

 easy!
 Pg handles the log rotation for you

 Cons:
 you need to ship logs yourself to a central

server
 you need to clean up old logs yourself

cleanup...

Customize:

csvlog

Customize:

csvlog

 log_filename = 'postgresql-[timestamp].log' but
file is named postgresql-[timestamp].csv

Customize:

csvlog
 Pros:

 Pg handles the log rotation
 you get a lot of cool stuff without extra effort
 loading logs into a database is a snap!

 Cons:
 you need to ship logs yourself to a central

server
 you need to clean up old logs yourself
 logs are no longer human-readable
 you may not agree with the available fields

Customize:

syslog

Customize:

syslog
 Pros:

 centralized logging is easy
 leverage existing systems
 can do some fun stuff with syslog-ng

 Cons
 requires access to syslog.conf
 you need to provide log rotation, eg logadm.conf

 which, conveniently, ages out old files, too.

Customize:

syslog caveats
 performance issues?
 I put a timestamp on my messages (docs

recommend against that, so use at your own
risk)

 tz differences
 ”network latency”
 control freak

Recap

Customize:

other stuf
 log_checkpoints
 log_autovacuum_min_duration
 log_error_verbosity

Override a configured value from psql

Check settings from psql

Tools

photo Dougtone (flickr). Creative Commons license.

OK, I have logs.
Now what.

 use your eyeballs!
 ...and Unix utils

 tail, grep, sed, cut, awk, split -l

 throw it into a db
 csvlog makes this easy

 automated reporting
 roll your own
 generic: splunk, logstash, etc
 pg-specific: pgfouine, pgbadger

Tools:

csvlog -> database
 create a table (see the docs)

 ”application field” added in 9.0

 COPY 'my.log' TO log_table WITH CSV;

 profit!

 pros:
 disgustingly simple – best for automated parsing
 you get a lot of cool stuff (pid, timestamp, SQL state

code) automatically

 cons:
 raw logs are not human-readable
 don't get to choose your fields

FNNLC*

*Friday Night No Life Club

 (generic) Tools:

splunk & logstash
 www.splunk.com
 logstash.net
 Splunk costs $$$$, logstash is open-source
 Both are easy to install
 Both require some tweaking to handle Pg log

http://www.splunk.com/
http://www.splunk.com/

Tools:

pgfouine
 pg log parser
 pgfouine.projects.postgresql.org
 pHp
 8.4
 slow on larger logs

Tools:

pgbadger
 pg log parser
 https://github.com/dalibo/pgbadger
 Perl
 use this one :)

Tools:

pgfouine/pgbadger

Tools:

pgfouine/pgbadger
 pros:

 decent docs
 cron-able
 pretty, portable reports

 cons:
 fouine is slow for large logs (badger is faster)
 requires specific log_line_prefix:

 log_line_prefix = '%t [%p]'
 can't handle multi-line messages from stderr

logtype

Tools:

fouine/badger caveats
 re-format your syntax (eg, select -> SELECT)
 don't recognize some lines:

Further tweaking

photo benfulton. Creative Commons license.

log_line_prefix:

SQL State error code (%e)
 9.0+ (Guillaume Smet)
 5-digit code that you can look up

 and possibly find out a bit more about your error

 For example:

 22P02 = ”invalid text representation”
 22003 = ”numeric value out of range”

per-user stats

auto_explain

 contrib module - Takahiro Itagaki
 introduced in 8.4
 automatically runs EXPLAIN on every query

that takes longer than a (super)user-specified
value

 to install:
 cd /pg/src/contrib
 make && make install

auto_explain
postgresql.conf

auto_explain
psql

auto_explain

2010-10-11 10:24:15 PDT [11146]: [1552-1] user=markwkm,db=dbt5 LOG: duration: 0.048 ms
plan:
 Query Text: UPDATE customer_account
 SET ca_bal = ca_bal + -11675.200000
 WHERE ca_id = 43000039241
 Update (cost=0.00..8.28 rows=1 width=71)
 -> Index Scan using pk_customer_account on customer_account (cost=0.00..8.28
rows=1 width=71)
 Index Cond: ((ca_id)::bigint = 43000039241::bigint)
2010-10-11 10:24:15 PDT [11472]: [705-1] user=markwkm,db=dbt5 LOG: duration: 12.903 ms
plan:
 Query Text: SELECT * FROM SecurityDetailFrame1(false,8,'2002-2-12','RDEN')
 Function Scan on securitydetailframe1 (cost=0.00..10.00 rows=1000 width=1080)

One last thing:

Instead:

Safety first (sort of)!

 Manage postgresql.conf in $vcs
 git, svn, whatever

 Put your logs on their own partition
 Don't dink around with your settings and leave

for the weekend.
 Monitor your monitoring (it's meta!)

 especially file sizes/disk space

That's it!

photo by kcxd (flickr). Creative Commons license.

More...

”Query Logging and Workload Analysis”

Greg Smith

19 Sep 1:30pm

Thank you!

 console font: monofur by tobias b koehler
http://www.dafont.com/monofur.font

 PDXPUG
 Josh Heumann
 feedback welcome!

 Code sprint on Thursday
 gorthx@gmail.com, @gorthx

PostgreSQL Logging

Gabrielle Roth
EnterpriseDB

PgOpen 18 Sep 2012

...not just for lumberjacks

photo by U.S. Fish and Wildlife Service - Midwest Region. Creative Commons license.

Why you want logs

● So you have historical records of database events

Why you want logs

Maybe your coworkers like to play jokes on each
other.

Why you want logs

Or maybe they're just clumsy.

Why you want logs

 Historical record
 starts, stops, reloads of config file
 who's connected
 data or schema changes

 Troubleshooting aid
 Legal requirement

Also useful for diagnosing problems with front-end apps; looking for things
like slow or failing queries.

You may have a legal requirement to track certain activities, and maybe to
keep logs for a certain amount of time – or to NOT keep logs.

I really recommend that you have rudimentary logging set up, even if nobody
else at your organization thinks this is important.

Key: You want to be able to find out what happened.

The Basics

photo from brittgow (flickr). Creative Commons license.

● comes with postgres, but not enabled by default
● all you have to do is turn it on!

The Basics:

How to get logs
Easy!

 make this change to postgresql.conf
 ...and restart

● Go find this parameter in postgresql.conf,
uncomment it & change it to on, and restart the
database.

● Then go see what you have in your logs.
● In this talk, the commented lines are the default

values from postgresql.conf. New values are
uncommented and altered.

● It really is just this simple!

● There are a couple more things you need to know
though.

The Basics:
A few more things you need to know...

 Find your logs at:
 $PGDATA/pg_log/postgresql-[timestamp].log
 aka: log_directory and log_filename

The Basics:
A few more things you need to know...

 #log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'

 #log_rotation_age = 1d

 #log_rotation_size = 10MB

 don't forget to clean up!

log_rotation_age = 0 disables
log_rotation_size = 0 disables

Voila.

● This is what we see when we enable logging this
simple way & run the 3 examples from the
beginning of the talk – notice only the restart
showed up.

● There's not a lot here :) The defaults are quite
conservative.

● While this is useful, it is not entirely what I want.

The Basics:
Recap

...now let's customize it a bit

photo © Shanti Isenagle. Used with permission.

Logging-related GUCs in
postgresql.conf

 Three sections:
 Where to Log
 When to Log
 What to Log
 ...and some random locations.

 Defaults are pretty conservative

 Most parameters require pg_ctl reload; others require
restart (noted in postgresql.conf)

I'm not going to discuss every single parameter, because that would be
boring. I'm just going to talk about the ones that I like. You will probably
end up with something different.

As I mentioned, the defaults are pretty conservative, so when in doubt, start
with those.

You can set some of the parameters on the command-line at server start, but
I don't do that.

I manage it all in postgres.conf, because changes to postgres.conf don't roll
out of my command history and cause me to, say, forget where I put my
logfile.

Customize:

What to Log

 who connected/disconnected
 log_connections/log_disconnections

 what's changed
 log_statement

 apply message prefix*
 log_line_prefix

I think of this as the basic settings.

Remember, from my examples at the beginning, I
want to know if my data or schema has changed.

I'm also kind of interested in who's connecting. (Only
useful with a small user base.)

And there are some other little tidbits I want to know
about who's doing what that we'll look at.

I can get all of those things by tweaking these
parameters here.

Customize:
who connected

First up: who's connected.

Super-simple: find these params in pg.conf,
uncomment them, and set them to on.

And RELOAD.

Customize:
who connected

This is what we get. Notice what's included here.

Customize:
what's changed

What about the changes to my data? We do this with log_statement.
Default is none; no statements are being logged.

ddl = data definition language changes: updates to your schema – stuff like
ALTER TABLE, DROP TABLE.

mod = data modification – your INSERTs, UPDATEs, and DELETEs. PLUS
ddl.

all = everything. SELECTS, etc. You probably don't want that right off the
bat.

So I set this to mod, so I see both the data change example and the schema
change example.

If I had this set to ddl, I would have seen only the schema change example.

We're still missing some important information – like which database these
commands are being executed in. We could probably piece it together
with info from log_connections (previous slide), but since those probably
aren't the only queries and users in your database, we'll do something
else that's easier.

Customize:
what's changed

Customize:
add a message prefix

A message prefix just adds some extra info to the
message. There are a lot of options available; this
isn't all of them, just a few of my favorites.

And here's what I use.

Customize:
add a message prefix

This is what it looks like in action.

Note that we can now tell which database each qeury
ran on.

You will want to work out your own, and this may be
influenced by which log parsing tool you use (if
any).

Except for a couple of examples, I'm not going to
show these for the rest of the presentation because
it takes up a lot of room. Imagine they are still
there.

Customize:
resolve the hostname

log_hostname works in conjunction with log_connections and/or the %r
param to log_line_prefix. It's not going to do you any good if you don't
have one or the other of those configured as well.

Default is off; just like the other params we've been looking at, uncomment
it, set it to 'on', and reload.

This is what the same message would look like with log_hostname enabled.

There will be additional overhead, which you may notice under heavy load.

Customize:

What to log recap

So, to sum up:
log_connections and disconnections tell me who's logging in to what

database
I have my log_statement set to a value that tells me about both schema and

data modifications
I have my log_line_prefix set to tell me other releveant info. Yours will be

different

Customize:

When to Log
 message levels

 log_min_messages
 client_min_messages
 log_min_error_statement

 long queries
 log_min_duration_statement

This is where we decide what level of messages we want. Do we want to
know only about ERRORs, or maybe NOTICEs too?

We can also do some investigation into queries that may need optimization.

These (top 3) are the most confusing parameters I worked with. So, again,
don't get discouraged.

Customize:

Message Levels

Let's talk about the levels first.

DEBUG, INFO, NOTICE, WARNING, ERROR,
LOG, FATAL, PANIC.

(or something like that.)

This is for log_min_messages, others are slightly
different but the important thing to grasp is that they
go in order from least to greatest importance.

”Hi, I inhaled” vs ”My hair is on fire”.
When you log at a level of lesser importance (eg

NOTICE), you automatically get all the more
important levels, too (WARNING, ERROR, etc.)

The level for each message is set within postgres. If
you don't agree with them, sorry.

Customize:

log_ and client_min_messages,
log_min_error_statement

the defaults are probably fine.

When I was experimenting with these, I wrote a script of statements I wanted
logged vs not logged, and changed one of the params at a time, ran my
script, and see if I got what I wanted.

Customize:

Long Queries

let's capture some queries.

log_min_duration_statement logs any statement that runs longer than
however many milliseconds I've put in here. For example, if I run a
SELECT that takes 3 minutes, I'll get a log message stating that I had a
query of [x] duration, *plus* the actual SQL statement. You can also
specify units here, so you don't have to work out the math of how many
milliseconds there are in, say, 10 minutes.

If you set this to 0, it will log *everything*. -1 disables it (that's the default).
And guess what? This interacts with log_statement (back in our basic ”what

to log” section.)

log_statement +
log_min_duration_statement

You don't have to have log_statement enabled in
order to use log_min_duration_statement.

Conversely, if you have a statement that would be
logged by both (in our case, an INSERT [which falls
under the 'mod' value in log_satement] that takes
longer than 2s) - the query WILL NOT be printed
by log_min_duration_statement, only the timing.

- this is where log_line_prefix comes in. One of the
things you can specify in log_line_prefix is a pid,
which you can then use to match up stuff from
log_min_duration_statement that overlaps with
log_statement.

- you may want to just choose one or the other of
log_statement and log_min_duration statement.

Customize:

Where to log
 You have four choices:

 eventlog
 csvlog
 syslog
 stderr

Made with LucidChart. Grossly oversimplified. Not for production use.

Customize:

eventlog (Windows)
 get service start/stop messages by default
 edit postgresql.conf
 restart via Services menu OR

 reload via PgAdmin

 use Event Viewer to view
 set up a custom filter to reduce annoyance

More help? see me afterwards or at the code sprint.

Customize:

stderr (review)

We'll start with a basic stderr setup here, because it's
the easiest - Pg handles all the details for you. In
fact, if you enabled only logging_collector, you are
already using it.

Put the log wherever you want; name it whatever
you want.

Pg handles the log rotation for you.

Log rotation – keeps your logs from growing out of
control. Existing log is saved to a different file,
truncated, and starts clean.

Customize:

stderr
 make sure the pg user has perms on the log

directory, otherwise:

 ...and the database won't start.

The only thing you have to make sure of is that the
postgres user has the correct perms on the log
directory. You will find out pretty quickly if not.

Customize:

stderr
 Pros:

 easy!
 Pg handles the log rotation for you

 Cons:
 you need to ship logs yourself to a central

server
 you need to clean up old logs yourself

pros: easy, pg handles log rotation
cons: if you want centralized logging, you need to

figure out a way to get your logs to your log server;
you need to clean them up. But that's not that hard.

cleanup...

You can write a shell script.

I am not responsible if you use this and it breaks
something.

Customize:

csvlog

Exactly the same as stderr, just specify 'csvlog.'

Customize:

csvlog

 log_filename = 'postgresql-[timestamp].log' but
file is named postgresql-[timestamp].csv

Yum.

Customize:

csvlog
 Pros:

 Pg handles the log rotation
 you get a lot of cool stuff without extra effort
 loading logs into a database is a snap!

 Cons:
 you need to ship logs yourself to a central

server
 you need to clean up old logs yourself
 logs are no longer human-readable
 you may not agree with the available fields

The best thing about csvlog is that loading logs into a database for data
warehousing or further analysis is a snap. We'll see that when we talk
about the analysis tools.

The bad:
Personally, I don't like to read csv files with more than about two fields. And

there are lots here.

Also you are stuck with what you get in terms of fields and their contents,
and may have to do additional parsing.

Customize:

syslog

This brings us to syslog, usually my preferred option.

Simpler to set up from the Pg side (fewer parameters
here), more complicated from the system side.

You'll need to work with your sysadmin to figure out
an appropriate facility. It's beyond the scope of this
discussion (we can talk about it later if you want).
Suffice to say, you can make a big mess if you pick
the wrong one.

We'll talk about the message prefix in a couple of
slides.

Customize:

syslog
 Pros:

 centralized logging is easy
 leverage existing systems
 can do some fun stuff with syslog-ng

 Cons
 requires access to syslog.conf
 you need to provide log rotation, eg logadm.conf

 which, conveniently, ages out old files, too.

Customize:

syslog caveats
 performance issues?
 I put a timestamp on my messages (docs

recommend against that, so use at your own
risk)

 tz differences
 ”network latency”
 control freak

There will be additional overhead. [Note: Greg Smith's talk covers a way to
partially alleviate this.]

In the previous slide I showed my log_line_prefix, which includes a
timestamp. The docs specifically recommend against this to reduce
overhead, but I include it anyway, even though the syslog daemon does
provide its own timestamp. Mainly to have an extra data point if I'm doing
timezone math. Which I hate.

Recap

All righty, here's our config thus far. Again, YMMV: this may not be
appropriate for your use. I encourage you to experiment!

Customize:

other stuf
 log_checkpoints
 log_autovacuum_min_duration
 log_error_verbosity

Other config parameters to be aware of, once you're
comfortable with what we've covered so far.

Override a configured value from psql

If you have THE POWER.

Check settings from psql

In case you forgot, and don't feel like opening up
postgres.conf...

Tools

photo Dougtone (flickr). Creative Commons license.

OK, I have logs.
Now what.

 use your eyeballs!
 ...and Unix utils

 tail, grep, sed, cut, awk, split -l

 throw it into a db
 csvlog makes this easy

 automated reporting
 roll your own
 generic: splunk, logstash, etc
 pg-specific: pgfouine, pgbadger

You can read them. If you're a masochistic insomniac.

Look at them before you start having a problem. Get a grip on what
”normal” looks like for you. Also, you will likely have to look for something
in the raw logs at some point in time – get yourself familiar with the
environment now.

If you find stuff, fix it. You don't want to have to remember at 2am that 'Oh,
yeah, those 3000 error messages we get every night are normal.'

Start out with the basic Unix utils for parsing files and see what's what.

Of course you could just throw it into a database or use some other reporting
tools available.

Tools:

csvlog -> database
 create a table (see the docs)

 ”application field” added in 9.0

 COPY 'my.log' TO log_table WITH CSV;

 profit!

 pros:
 disgustingly simple – best for automated parsing
 you get a lot of cool stuff (pid, timestamp, SQL state

code) automatically

 cons:
 raw logs are not human-readable
 don't get to choose your fields

FNNLC*

*Friday Night No Life Club

This is just a quick sample of the sort of thing you can
do – this is my log messages, grouped by severity
and hour (mainly this was an excuse to use
date_trunc because I love it.)

Notice I have a lot of WARNINGs coming in at 4pm?
Maybe I should see what's happening then, some
automated report or something.

 (generic) Tools:

splunk & logstash
 www.splunk.com
 logstash.net
 Splunk costs $$$$, logstash is open-source
 Both are easy to install
 Both require some tweaking to handle Pg log

● I don't recommend setting these up just for
postgres, but certainly leverage your existing
systems if you already have these in place

Tools:

pgfouine
 pg log parser
 pgfouine.projects.postgresql.org
 pHp
 8.4
 slow on larger logs

The original.

Tools:

pgbadger
 pg log parser
 https://github.com/dalibo/pgbadger
 Perl
 use this one :)

The new kid on the block.

Tools:

pgfouine/pgbadger

Comparison of the command lines (pgbadger
includes all that stuff by default.)

It's really easy to switch from fouine to badger.

Tools:

pgfouine/pgbadger
 pros:

 decent docs
 cron-able
 pretty, portable reports

 cons:
 fouine is slow for large logs (badger is faster)
 requires specific log_line_prefix:

 log_line_prefix = '%t [%p]'
 can't handle multi-line messages from stderr

logtype

CSS for the layout is included in each, so you can
just ship the report somewhere and it won't display
all weird. This makes it easy to share them with
your friends!

Tools:

fouine/badger caveats
 re-format your syntax (eg, select -> SELECT)
 don't recognize some lines:

Even if it doesn't recognize the lines, it tells you
instead of dying quietly.

Further tweaking

photo benfulton. Creative Commons license.

log_line_prefix:

SQL State error code (%e)
 9.0+ (Guillaume Smet)
 5-digit code that you can look up

 and possibly find out a bit more about your error

 For example:

 22P02 = ”invalid text representation”
 22003 = ”numeric value out of range”

This is an actual example, comparing what comes in
in the logs with the actual published translation. So
sometimes it will help you, sometimes it will only
provide entertainment value.

per-user stats

auto_explain

 contrib module - Takahiro Itagaki
 introduced in 8.4
 automatically runs EXPLAIN on every query

that takes longer than a (super)user-specified
value

 to install:
 cd /pg/src/contrib
 make && make install

auto_explain is like log_min_duration_statement on
crack.

It's a contrib module and you need to install it; here
are the instructions.

It logs the EXPLAIN output for any query that runs
longer than a certain amount of time (which you
specify). This is cool because you can have it
capture EXPLAIN data for you while you're out
doing something else, and review the logs at your
leisure.

But be careful – this will create a lot of output! Try
this in your dev environment.

auto_explain
postgresql.conf

Once you have it installed, here's how you configure
it in postgres.conf

auto_explain
psql

I use it mainly from a psql session; here's how to do
that. Then I just run whatever queries I want to
check out. This is probably the safer way to run it
than having it enabled all the time.

auto_explain

2010-10-11 10:24:15 PDT [11146]: [1552-1] user=markwkm,db=dbt5 LOG: duration: 0.048 ms
plan:
 Query Text: UPDATE customer_account
 SET ca_bal = ca_bal + -11675.200000
 WHERE ca_id = 43000039241
 Update (cost=0.00..8.28 rows=1 width=71)
 -> Index Scan using pk_customer_account on customer_account (cost=0.00..8.28
rows=1 width=71)
 Index Cond: ((ca_id)::bigint = 43000039241::bigint)
2010-10-11 10:24:15 PDT [11472]: [705-1] user=markwkm,db=dbt5 LOG: duration: 12.903 ms
plan:
 Query Text: SELECT * FROM SecurityDetailFrame1(false,8,'2002-2-12','RDEN')
 Function Scan on securitydetailframe1 (cost=0.00..10.00 rows=1000 width=1080)

No font can adequately display EXPLAIN output, but
we're going to try.

Note that you get the query text, timing, and the
EXPLAIN output.

Again: this will produce a LOT of output in your logs.
Keep an eye on them.

One last thing:

Instead:

Safety first (sort of)!

 Manage postgresql.conf in $vcs
 git, svn, whatever

 Put your logs on their own partition
 Don't dink around with your settings and leave

for the weekend.
 Monitor your monitoring (it's meta!)

 especially file sizes/disk space

logs on their own partition: if you don't know what that means, talk to your
sysadmin, tell them what you're trying to do, and they will help you. It is in
their best interest to help you.

protip: ”don't make changes on friday afternoon.”

Which brings me to my final point – monitor your logs. You can pipe an alert
to nagios. A coworker wrote a shell script that counts the number of
lines in my log files and sends them to rrd so I have a graph. You want to
know if your files suddenly increase dramatically in size.

That's it!

photo by kcxd (flickr). Creative Commons license.

More...

”Query Logging and Workload Analysis”

Greg Smith

19 Sep 1:30pm

Thank you!

 console font: monofur by tobias b koehler
http://www.dafont.com/monofur.font

 PDXPUG
 Josh Heumann
 feedback welcome!

 Code sprint on Thursday
 gorthx@gmail.com, @gorthx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

