
Concurrency & PostgreSQL

Marko Tiikkaja

The European PostgreSQL Day 2010

SQL is easy

Not Easy!

SQL is not easy
• Multi-threaded
• MVCC
• Different isolation levels

Basics

What are snapshots?

A snapshot is the state of a system at a particular point in time.

Hard to do:
• Ignore changes of aborted transactions
• Ignore changes of uncommitted transactions
• Performance

What is MVCC?

MVCC stands for Multiversion Concurrency Control
• Multiple row versions
• No read locks!
• Consistent view of the data
• Readers don’t block writers and vice versa

Two Levels of Isolation

There are two different isolation levels:
• READ COMMITTED: new snapshot for every query.
• SERIALIZABLE: single snapshot for the entire transaction.

The default can be controlled using default_transaction_isolation,
which defaults to READ COMMITTED.

Locks

Locks are used for synchronization between sessions.

You can lock different objects:
• Tables
• Rows
• Advisory locks

With the exception of advisory locks, locks are released at the end
of the transaction.

Table Locks

Rows and advisory locks can be locked in either SHARED or
EXCLUSIVE mode.

Table locks have a finer granularity:

Current Lock Mode
Requested ACCESS ROW ROW SH UPD SHARE SH ROW EXCL ACCESS
Lock Mode SHARE SHARE EXCL EXCL EXCL EXCL
ACCESS
SHARE X
ROW SHARE X X
ROW EXCL X X X X
SH UPD EXCL X X X X X
SHARE X X X X X
SH ROW EXCL X X X X X X
EXCL X X X X X X X
ACCESS EXCL X X X X X X X X

Deadlocks

A deadlock is a situation where two are each waiting for each other
to release a resource, or more than two processes are waiting for
resources in a circular chain.

To avoid deadlocks:
• Lock objects in the same order in every transaction.
• Take the most restrictive lock first.

Order Matters

Lock objects in the same order in every transaction.

BEGIN ; BEGIN ;
LOCK TABLE foo ; LOCK TABLE bar ;

LOCK TABLE bar ; −− w a i t s

LOCK TABLE foo ;

Order Matters

ERROR: deadlock detected
DETAIL: Process 9509 waits for AccessExclusiveLock on relation 31235
of database 16386; blocked by process 9504. Process 9504 waits for
AccessExclusiveLock on relation 28674 of database 16386; blocked by
process 9509.
HINT: See server log for query details.

Order Matters

Take the most restrictive lock first.

BEGIN ; BEGIN ;
SELECT ∗ FROM foo SELECT ∗ FROM foo

FOR SHARE; FOR SHARE;

−− both succeed

SELECT ∗ FROM foo
FOR UPDATE; −− w a i t s

SELECT ∗ FROM foo
FOR UPDATE;

Order Matters

ERROR: deadlock detected
DETAIL: Process 9521 waits for ExclusiveLock on tuple (0,1) of relation
31235 of database 16386; blocked by process 9519. Process 9519 waits
for ShareLock on transaction 14468334; blocked by process 9521.
HINT: See server log for query details.

SELECT and DML
behaviour

SELECT

SELECTs only see data visible to their snapshot.

.. except when FOR SHARE or FOR UPDATE is present.

SELECT

Consider the following:
CREATE TABLE foo (a i n t) ;
INSERT INTO foo VALUES (0) ;

BEGIN ; BEGIN ;
UPDATE foo SET

a = 1 ;

SELECT a FROM foo ;
−− s e e s a=0

SELECT a FROM foo
FOR UPDATE;

−− w a i t s

COMMIT;
−− and now s e e s a=1

SELECT

But when we’re in SERIALIZABLE isolation:

BEGIN ; BEGIN SERIALIZABLE ;
UPDATE foo SET

a = 1 ;

SELECT a FROM foo ;
−− s e e s a=0

SELECT a FROM foo
FOR UPDATE;

−− w a i t s

COMMIT;

SELECT

ERROR: could not serialize access due to concurrent update

SELECT
However, the WHERE clause works differently:

BEGIN ; BEGIN SERIALIZABLE ;
UPDATE foo SET

a = 1 ;
SELECT a FROM foo ;
−− s e e s a=0

SELECT a FROM foo
WHERE a = 1
FOR UPDATE;

−− does NOT wa i t

COMMIT;

SELECT a FROM foo
WHERE a = 1
FOR UPDATE;

−− does not wa i t o r
−− s e e the row

SELECT

.. with a small exception:

BEGIN ; BEGIN ;
UPDATE foo SET

a = 1 ;
SELECT a FROM foo

WHERE a = 0 ;
−− s e e s a=0

SELECT a FROM foo
WHERE a = 0
FOR UPDATE;

−− w a i t s

COMMIT;
−− does not s e e the row !

In SERIALIZABLE, this results in a serialization error.

SELECT

Keep in mind that only direct references see the latest version:

BEGIN ; BEGIN ;
UPDATE foo SET

a = 1 ;
SELECT a FROM foo ;
−− s e e s a=0

SELECT (SELECT a FROM foo)
FROM foo FOR UPDATE;

−− w a i t s

COMMIT;
−− a l s o s e e s a=0

UPDATE and DELETE

UPDATE and DELETE work very similarly to SELECT .. FOR
UPDATE.

• Only see data visible to their snapshot
• See the latest versions of rows
• Serialization errors in SERIALIZABLE
• Same behaviour for WHERE clauses
• Same behaviour in the scalar subquery case

However, two of these do NOT apply when the
target is a VIEW.

UPDATE and DELETE

UPDATE and DELETE work very similarly to SELECT .. FOR
UPDATE.

• Only see data visible to their snapshot
• See the latest versions of rows
• Serialization errors in SERIALIZABLE
• Same behaviour for WHERE clauses
• Same behaviour in the scalar subquery case

However, two of these do not apply when the
target is a VIEW.

Views Are Dangerous

Consider:
CREATE TABLE bar (i d s e r i a l , a i n t) ;
INSERT INTO bar VALUES(DEFAULT, 0) ;

CREATE VIEW foo AS SELECT ∗ FROM bar ;

CREATE RULE foo_update_ru l e AS
ON UPDATE TO foo DO INSTEAD

UPDATE bar SET a = NEW. a
WHERE i d = OLD. i d ;

CREATE RULE f o o _ d e l e t e _ r u l e AS
ON DELETE TO foo DO INSTEAD

DELETE FROM bar
WHERE i d = OLD. i d ;

Views Are Dangerous

BEGIN ; BEGIN ;
UPDATE foo SET

a = a + 1 ;
UPDATE foo SET

a = a + 1 ;
−− w a i t s

COMMIT;
−− wakes up
COMMIT;

Uh-oh! foo.a is now 1, not 2.

Views Are Dangerous

And the issue with the WHERE clause:
BEGIN ; BEGIN ;
UPDATE foo SET

a = 1 ;
DELETE FROM bar

WHERE a = 0 ;
−− w a i t s

COMMIT;
−− wakes up and d e l e t e s
−− the row !
COMMIT;

The row we removed did not match the WHERE clause.

Views Are Dangerous

Fortunately, both problems can be solved by using the
SERIALIZABLE isolation.

Unfortunately, it has its problems too:
• Performance degradation because of transaction retries
• Can’t be done transparently in a server-side function
• False positives

All in all, not a very good solution.

Constraints

Why Should You Use Constraints?

Why should you use constraints?
• Efficiency
• Correctness
• Ease of use

UNIQUE And PRIMARY KEY

UNIQUE (a,b,c) specifies that the combination of (a,b,c) must be
unique across the whole table.
PRIMARY KEY just means UNIQUE + NOT NULL.

Another way to think about it is:
SELECT count (∗) FROM t b l

WHERE a = NEW. a AND b = NEW. b AND c = NEW. c ;

must return 0 for the INSERT to succeed.

UNIQUE And PRIMARY KEY

But that’s the easy part; the bigger problem is that it also must
remain that way for the remainder of the transaction (ignoring, of
course, the tuple we INSERTed).

Do not do this:
BEGIN ;

SELECT count (∗) FROM t b l
WHERE a = NEW. a AND b = NEW. b AND c = NEW. c ;

−− i f t h e r e were no rows :
INSERT INTO t b l VALUES (NEW. a , NEW. b , NEW. b) ;

COMMIT;

Unless you have a UNIQUE constraint in place.

Exclusion Constraints

Exclusion constraints are a generalization of that idea; using
operators other than = can be useful:
CREATE TABLE c i r c l e s
(

a i n t ,
b c i r c l e ,
EXCLUDE USING g i s t (a WITH =, b WITH &&)

) ;

SELECT count (∗) FROM c i r c l e s
WHERE a = NEW. a AND b && NEW. b ;

must return 0 for the INSERT to succeed.

FOREIGN KEY Constraints

FOREIGN KEY constraints are different:
FOREIGN KEY (a , b , c) REFERENCES o t h e r _ t b l (a , b , c)

SELECT count (∗) FROM o t h e r _ t b l
WHERE a = NEW. a AND b = NEW. b AND c = NEW. c ;

must return at least one row for the INSERT to succeed.

The same problem occurs: that fact can not change before the
transaction commits.

FOREIGN KEY Constraints

• Implemented using row-level locks (i.e. SELECT .. FOR
SHARE) and AFTER EACH ROW triggers

• User-space implementations are possible in READ COMMITTED
already, and possibly all isolation levels in 9.1

FOREIGN KEY Constraints

Assume the following schema:
CREATE TABLE p roduc t s
(

name t e x t PRIMARY KEY,
un so l d i n t

) ;

CREATE TABLE o r d e r s
(

p roduc t t e x t REFERENCES p r odu c t s
) ;

FOREIGN KEY Constraints

BEGIN ;

INSERT INTO o r d e r s
VALUES (’ car ’) ;

UPDATE produc t s
SET unso l d = unso l d − 1
WHERE name = ’ car ’ ;

−− danger !

COMMIT;

How do we fix this?

FOREIGN KEY Constraints

UPDATE first:

BEGIN ;

UPDATE produc t s
SET unso l d = unso l d − 1
WHERE name = ’ car ’ ;

INSERT INTO o r d e r s
VALUES (’ car ’) ;

COMMIT;

FOREIGN KEY Constraints

Lock the row yourself:

BEGIN ;

SELECT 1 FROM produc t s
WHERE name = ’ car ’
FOR UPDATE;

INSERT INTO o r d e r s
VALUES (’ car ’) ;

UPDATE produc t s
SET unso l d = unso l d − 1
WHERE name = ’ car ’ ;

−− s a f e !

COMMIT;

Summary

Summary

• Be careful with VIEWs
• Pay attention to isolation levels
• Use the built-in constraints
• Be aware of implicit locking
• Be wary of if (SELECT ..)
• Think at least twice before using INSERT/UPDATE/DELETE ..

WHERE NOT EXISTS and its variants
• Do not expect RULEs to be a good idea

Summary

SELECT * FROM
questions;

Summary

Thank you!
Remember to give feedback:

http://2010.pgday.eu/feedback

marko.tiikkaja@cs.helsinki.fi

	SQL Is Not Easy
	Basics
	Snapshots
	MVCC
	Isolation Levels
	Locks
	Deadlocks

	SELECT and DML behaviour
	SELECT
	UPDATE and DELETE

	Constraints
	Why Constraints?
	UNIQUE And PRIMARY KEY
	Exclusion Constraints
	FOREIGN KEY Constraints

	Summary

