

PostgreSQL developer meeting: GIN generalization 1

GIN generalization
Alexander Korotkov, Oleg Bartunov

Work supported by Federal Unitary Enterprise Scientific-
Research Institute of Economics, Informatics and Control
Systems

PostgreSQL developer meeting: GIN generalization 2

Presentation plan

● New storage (additional infromation +
compression)

● Fast scan (skip parts of posting trees)
● Ordering in index
● Planner optimization
● Applications

PostgreSQL developer meeting: GIN generalization 3

Additional information
storage

Posting list

PostgreSQL developer meeting: GIN generalization 4

Additional information
interface

Datum *extractValue
(

Datum itemValue,
int32 *nkeys,
bool **nullFlags,
Datum *addInfo,
bool *addInfoIsNull

)

bool consistent
(

bool check[],
StrategyNumber n,
Datum query,
int32 nkeys,
Pointer extra_data[],
bool *recheck,
Datum queryKeys[],
bool nullFlags[],
Datum addInfo[],
bool addInfoIsNull[]

)

void config
(

GinConfig *config
)

PostgreSQL developer meeting: GIN generalization 5

ItemPointer

typedef struct BlockIdData
{
 uint16 bi_hi;
 uint16 bi_lo;
} BlockIdData;
typedef struct ItemPointerData
{
 BlockIdData ip_blkid;
 OffsetNumber ip_posid;
}

6 bytes!

PostgreSQL developer meeting: GIN generalization 6

BlockIdData compression
BlockNumber delta is a small number:

use varbyte encoding

PostgreSQL developer meeting: GIN generalization 7

OffsetNumber compression

O0-O15 – OffsetNumber bits
N – Additional information NULL bit

Offset is typically low: use varbyte encoding

PostgreSQL developer meeting: GIN generalization 8

New storage example

PostgreSQL developer meeting: GIN generalization 9

GIN partial match

Without additional information
partial match beaves so:

● Save ItemPointers of all matching
entries into bitmap

● Use bitmap instead of partial
match entry

PostgreSQL developer meeting: GIN generalization 10

GIN partial match with
additional information

Datum joinAddInfo
(

Datum addInfos[]
)

Join additional information for all entries of each
ItemPointer together?

Where to store it?
It might be much more huge than bitmap.

PostgreSQL developer meeting: GIN generalization 11

Fast scan

entry1 && entry2

PostgreSQL developer meeting: GIN generalization 12

Fast scan: interface

bool preCconsistent
(

bool check[],
StrategyNumber n,
Datum query,
int32 nkeys,
Pointer extra_data[]

)

preConsistent: consistent which allows false positives

PostgreSQL developer meeting: GIN generalization 13

Sorting in index

Uses KNN infrastructure. Woks so:
1. Scan + calc rank
2. Sort
3. Return using gingettuple one by
one

It is right design at all? Should we
do sorting in a separate node?

PostgreSQL developer meeting: GIN generalization 14

Sorting in index:
interface

float8 calcRank
(

bool check[],
StrategyNumber n,
Datum query,
int32 nkeys,
Pointer extra_data[],
bool *recheck,
Datum queryKeys[],
bool nullFlags[],
Datum addInfo[],
bool addInfoIsNull[]

)

PostgreSQL developer meeting: GIN generalization 15

Planner optimization:
before

test=# EXPLAIN (ANALYZE, VERBOSE) SELECT * FROM test ORDER BY
slow_func(x,y) LIMIT 10;
 QUERY
PLAN

--
 Limit (cost=0.00..3.09 rows=10 width=16) (actual time=11.344..103.443
rows=10 loops=1)
 Output: x, y, (slow_func(x, y))
 -> Index Scan using test_idx on public.test (cost=0.00..309.25
rows=1000 width=16) (actual time=11.341..103.422 rows=10 loops=1)
 Output: x, y, slow_func(x, y)
 Total runtime: 103.524 ms
(5 rows)

PostgreSQL developer meeting: GIN generalization 16

Planner optimization:
after

test=# EXPLAIN (ANALYZE, VERBOSE) SELECT * FROM test ORDER BY
slow_func(x,y) LIMIT 10;
 QUERY PLAN

--
 Limit (cost=0.00..3.09 rows=10 width=16) (actual time=0.062..0.093
rows=10 loops=1)
 Output: x, y
 -> Index Scan using test_idx on public.test (cost=0.00..309.25
rows=1000 width=16) (actual time=0.058..0.085 rows=10 loops=1)
 Output: x, y
 Total runtime: 0.164 ms
(5 rows)

PostgreSQL developer meeting: GIN generalization 17

Applications

● Better FTS
● Array similarity search (better smlr)
● Positioned n-grams (better pg_trgm)
● Index on regexes (inverted task)

PostgreSQL developer meeting: GIN generalization 18

Better FTS

● tsvector >< tsquery = 1/ts_rank(tsvector,
tsquery)

● gin_tsvector_config — set bytea additional
information type

● gin_extract_tsquery — extract compressed
word positions as additional information

● gin_tsquery_pre_consistent — evaluate
tsquery ignoring NOTs

● gin_tsquery_relevance — calculate ><

PostgreSQL developer meeting: GIN generalization 19

Better FTS: query

SELECT
 itemid, title
FROM
 items
WHERE
 fts @@ plainto_tsquery('russian',
 'квартира арбат')
ORDER BY
 fts >< plainto_tsquery('russian',
 'квартира арбат')
LIMIT
 10;

PostgreSQL developer meeting: GIN generalization 20

Better FTS: plan

 Limit (cost=40.00..80.22 rows=10 width=400) (actual time=1.559..1.5
 Buffers: shared hit=1236
 -> Index Scan using fts_idx on items (cost=40.00..7425.31 rows=1
 Index Cond: (fts @@ '''квартир'' & ''арбат'''::tsquery)
 Order By: (fts >< '''квартир'' & ''арбат'''::tsquery)
 Buffers: shared hit=1236
 Total runtime: 1.579 ms

PostgreSQL developer meeting: GIN generalization 21

Avito.ru: testing

Without
patch

With patch With patch
without
tsvector

Sphinx

Table size 6.0 GB 6.0 GB 2.87 GB -

Index size 1.29 GB 1.27 GB 1.27 GB 1.12 GB

Index build
time

216 sec 303 sec 718sec 180 sec*

Queries in 8
hours

3,0 M 42.7 M 42.7 M 32.0 M

PostgreSQL developer meeting: GIN generalization 22

It flies!

PostgreSQL developer meeting: GIN generalization 23

Thank you for attention!
Questions?

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23

