

Advanced access to PostgreSQL from
Python with psycopg2

“classic” psycopg homepage

Psycopg characteristics

● LGPL license
● Written mostly in C
● libpq wrapper

● Python 2.4 – 2.7
● PostgreSQL >= 7.4

– dropped V2 protocol support in 2.3

● Implements Python DB-API interface
● connection wraps the session
● cursor holds a result

Latest history

● Before 2010: a lot of undocumented
features
● Py-PG adaptation, SSC, notifies

● 2.2: async support
● 2.3: notify payload, 2PC, hstore

Let's talk about...

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

Python objects adaptation

● An adapter maps Python objects into SQL
syntax
● built-in adapters for basic objects/types

● Adapters are registered by type
● since Psycopg 2.3: Liskov-friendly

Adapter example: XML
from xml.etree import cElementTree as ET

from psycopg2.extensions import \

 adapt, register_adapter

class ElementAdapter:

 def __init__(self, elem):

 self.elem = elem

 def getquoted(self):

 return "%s::xml" \

 % adapt(ET.tostring(elem))

register_adapter(type(ET.Element('')),

 ElementAdapter)

Adapter example: XML

elem = ET.fromstring(

 "<doc>Hello, 'xml'!</doc>")

print adapt(elem).getquoted()

'<doc>Hello, ''xml''!</doc>'::xml

cur.execute("""

 INSERT INTO xmltest (xmldata)

 VALUES (%s);""", (elem,))

PostgreSQL types adaptation

● A typecaster maps PostgreSQL types into
Python objects

● Typecasters are registered per oid
● Global, connection or cursor scope

Typecaster example: XML

def cast_xml(value, cur):

 if value is None: return None

 return ET.fromstring(value)

from psycopg2.extensions import \

 new_type, register_type

XML = new_type((142,), "XML", cast_xml)

register_type(XML)

Typecaster example: XML

cur.execute("""

 SELECT xmldata FROM xmltest

 ORDER BY id DESC LIMIT 1;""")

elem = cur.fetchone()[0]

print elem.text

Hello, 'xml'!

dict-hstore adaptation

● hstore: associative array of strings
● foo => bar, baz => whatever

● Improved in PostgreSQL 9.0
● capacity and indexing

● Adapter new in Psycopg 2.3
● can deal with both pre-9.0 and 9.0

PostgreSQL

dict-hstore adaptation

psycopg2.extras.register_hstore(cnn)

cur.execute("SELECT 'a => b'::hstore;")

print cur.fetchone()[0]

{'a': 'b'}

cur.execute("SELECT %s;",

 [{'foo': 'bar', 'baz': None}])

SELECT hstore(ARRAY[E'foo', E'baz'],

ARRAY[E'bar', NULL])

hstore: SO useful
● ...if I only could remember the operators
cur.execute(# has a key?
 "select * from pets where data ? %s;",
 ('tail',))
cur.execute(# has all keys?
 "select * from pets where data ?& %s;",
 (['tail', 'horns'],))
cur.execute(# has any key?
 "select * from pets where data ?| %s;",
 (['wings', 'fins'],))
cur.execute(# has keys/values?
 "select * from pets where data @> %s;",
 ({'eyes': 'red', 'teeth': 'yellow'},))

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

Problem: out of memory

● I have this problem:

 cursor.execute(

 "select * in big_table")

 for record in cursor:

 whatever(record)

● Well, it doesn't work: “out of memory”!

Problem: out of memory

● cursor.execute() moves all the dataset
to the client
● PGresult structure

● cursor.fetch*() only manipulates
client-side data
● PGresult → Python objects

● DECLARE to the rescue!

Named cursors

● connection.cursor(name)

● cursor.execute(sql)

→ DECLARE name CURSOR FOR sql

● cursor.fetchone()

→ FETCH FORWARD 1 FROM name

● cursor.fetchmany(n)

→ FETCH FORWARD n FROM name

Named cursor

● If you need to manipulate many records
client-side

● Best strategy:
cur = connection.cursor(name)
cur.execute()
cur.fetchmany(n)

● Reasonable n to have good memory
usage and not too many network requests

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

Transactions handling

● The connection “has”
the transaction
● all its cursors share it

● Every operation in a
transaction
● DB-API requirement

● Until .commit() or
.rollback() you are
“<IDLE> in transaction”
● bad for many reasons

Close that transaction!
● People are notoriously good at remembering

boring details, aren't they?
● conn.commit()/conn.rollback()

● Use a decorator/context manager
@with_connection
def do_some_job(conn, arg1, arg2):
 cur = conn.cursor()
 # ...
with get_connection() as conn:
 cur = conn.cursor()
 # ...

● Go autocommit if you need to
● conn.set_isolation_level(
 ISOLATION_LEVEL_AUTOCOMMIT)

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

Async in psycopg

● Attempt from psycopg2, never worked
correctly
● conn.execute(query, args, async=1)

● Redesign in spring 2010, released in 2.2
● Thanks to Jan Urbański

● Being async is now a connection property
● psycopg2.connect(dsn, async=1)

● Async code path well separated from sync

psycopg and libpq sync

psycopg and libpq sync

Async in psycopg

● conn.fileno()
● Makes the connection a file-like object

● conn.poll() → [OK|READ|WRITE]

poll() knows things

● Calls the correct libpq function
● according to the operation to be performed

– connection, query, fetch, notifies...
● and the state of the connection

● Allows easy usage pattern
● cur.execute(query, args)
while “not_happy”:
 conn.poll()

Async example
cursor.execute(SQL)

while 1:

 state = conn.poll()

 if state == POLL_OK:

 break

 elif state == POLL_READ:

 select([conn.fileno()], [], [])

 elif state == POLL_WRITE:

 select([], [conn.fileno()], [])

cursor.fetchall()

psycopg and libpq async

Asynchronous access

● Fundamental problem: DB-API is blocking
● cnn = psycopg2.connect(dsn)
● cursor.execute(query, args)
● cursor.fetchall()

● Async connections have a different
interface
● So we can't use Django, SQLAlchemy...

● Complete control, but higher level to be
redone

Solution #1

● The “Twisted Solution”: what problem? :o)
● everything must be callback-based anyway

● txPostgres: async psycopg2 in Twisted
d = conn.connect(database=DB_NAME)

d.addCallback(lambda c: c.execute(SQL))

d.addCallback(lambda c: c.fetchall())

● Notice: many features missing in async
● No transactions, SSC, …

Coroutine libraries

● Interpreter-level cooperative aka “green”
threads
● Eventlet, gevent, uGreen

● “Monkeypatch” blocking functions
● time.sleep(), socket.read()...

● C extensions can't be patched
● A colleague of mine was struggling with

pg8000...

Solution #2: “wait” callback

● Globally registered
● psycopg2.extensions

.set_wait_callback(f)

● Gives control back to the framework when it's
time to wait
● Control can be passed to a different thread

● The Python interface is unchanged
● Less flexible, but classic blocking DB-API

● Customized for different coroutine libraries
● Outside of psycopg scope, but check psycogreen

Example wait callback

def eventlet_wait_callback(conn):

 while 1:

 state = conn.poll()

 if state == POLL_OK:

 break

 elif state == POLL_READ:

 trampoline(conn.fileno(), read=1)

 elif state == POLL_WRITE:

 trampoline(conn.fileno(), write=1)

psycopg and libpq green

● Types adaptation
● Server-side cursors
● Transactions handling
● Async support
● Server notifications

Server notifications

● Publish/
subscribe
channels

● PostgreSQL
LISTEN and
NOTIFY

● Added
payload in
PostgreSQL
9.0

Server notifications

● Payload support from Psycopg 2.3
● Received on execute()
● Received on poll()
● They love async mode!

Notification: push example
● Listen for DB notifies and put them in a queue

def dblisten(q):

 cnn = psycopg2.connect(dsn)

 cnn.set_isolation_level(0)

 cur = cnn.cursor()

 cur.execute("listen data;")

 while 1:

 trampoline(cnn, read=True)

 cnn.poll()

 while cnn.notifies:

 q.put(cnn.notifies.pop())

Notification: push example

Thanks!

Questions?

This work is licensed under
Creative Commons

Attribution-NonCommercial-ShareAlike 3.0
License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

