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Agenda

• Replication Theory

• Architectures
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Aspects of Theory

• CAP Theorem

• Apply Efficiency

• Conflict Rate

• Replication Lag
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CAP Theorem

• Consistency

• Availability

• Partition Tolerance
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Multi-Master
Efficiency Analysis
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Efficiency Analysis of Apply

• For simplicity, lets assume that the cost of apply 
is always proportional to the cost of change...

• If we make changes on one node with cost W, 
and then apply those changes on another 
node the cost of those changes is kW

•  If we have N nodes, then the cost to replay the 
changes from all other nodes will be (N-1)kW

• Total workload on any node is W + (N-1)kW

• If we define resource limit as 1, then total work 
from N nodes is N / (1 + k(N-1))
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Apply Efficiency

• With 1 node we do work 1.0

• With 2 nodes we do work 2/(1+k)
– k=1 means it takes exactly same effort to replay 

changes as it took to make original change

– k=0.5 means it takes 50% effort to apply changes

k 2 nodes 4 nodes 16 nodes

0.10 1.67 2.86 6.15

0.30 1.25 1.82 2.76

0.50 1.00 1.33 1.78

0.70 0.83 1.00 1.31

1.00 0.67 0.80 0.94
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Graphs of Apply Efficiency
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What is the Apply Constant, k?

• Physical replication allows changes directly to 
data blocks, so we avoid the need to search for 
keys via index searches, hence k < 1

• Read Scalability is possible with physical 
replication because k is typically about 0.5 and 
with only a single master, each node has spare 
capacity to do additional read workload

• Physical replication forces us to use just one 
node: multi-master required for write scalability

• Physical replication provides best read scalability
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What is the Apply Constant, k?

• Logical replication uses PK values, so we must 
repeat the key search when we apply

– Hard to see how k < 1 is possible in Executor

– Can save effort in parser and planner, but likely 
that k is in the range 0.3 to 0.7

• As the number of nodes increases the cost of 
apply must also consider the additional costs 
of conflict resolution/avoidance

• => Full multi-master replication can't deliver 
write scalability on its own
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Filtered Replication

• If less than 100% of data needs to be replicated 
to other nodes, the equation changes

• N / (1 + kf(N-1)) where f is the filter factor

• If f = 0 this means no data changes need to be 
sent to other nodes (e.g. full sharding)

– In that case total work from N nodes = N
– If k >= 0.7 sharding becomes essential if we 

want write scalability from replication 
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Other Theory
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Conflict Rate

• Multi-master conflict rate increases as the cube 
of the row-level contention [Grey]

• Message delays/offline nodes increases the 
conflict rate

• High rates of conflict resolution dramatically 
increase the cost of apply

– => conflicts reduce scalability
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Replication Delay

• If Apply is faster than Master, then replication 
can always keep up

• If Master is faster than Apply then replication will 
fall behind and replication is useless

• Whenever we measure performance we must 
also measure replication delay – if delay 
begins to increase then we have reached the 
limit of steady state performance
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Technical Requirements

• Filtered Replication/Sharding
– Filtering must take place on source

– Low values of f required for high scalability

• Highly efficient LCRs/Apply
– Low values of k required

– InCore approaches to apply gain importance
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Existing Approaches
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Streaming Replication

• Currently based on binary WAL
– Efficient because WAL is available “for free”

– Efficient apply using direct physical addresses

• Uses libpq so provides full security model

• Efficient use of protocol, with 2-way messaging

• Connection parameters, timeouts

• Modular code, becoming battle hardened
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Downsides of Physical Rep

• Using WAL means we reuse all the recovery 
code, which puts various restrictions

• No xids, No oids, No new WAL

• Master/Standby connected or causes cancels

• Futures Issues
– Harder to replicate just part of a database

– Harder to make cross-version replication work for 
online upgrade
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Slony/Londiste/Bucardo

• Been around a while

• We know they work

• Online upgrades

• Writes allowed on target systems

• Schemas can be slightly different

• Indexes/admin can differ on each node
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Downsides

• No filtering within a table

• Not part of core

• Many moving parts

• Low performance

• 3+ forks means effort is dissipated

• DDL support
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Postgres-XC

• Sharded cluster provides write scalability

• Massive changes to codebase
– Likely to remain a fork for some time

– Customers perceive support issues

• Solves single issue only

• No support for widely/geo distributed database
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Requirements
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Future Requirements

• In-Core

• Write Scalable

• Geographically Distributed

• Multimaster

• Coherent

• Online Upgrade

• DDL
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Generic Replication Model

• 1. Establish who is the master

• 2. Generate change messages

• 3. Apply local change

• 4. Transport replication messages

• 5. Apply replicated changes

• 6. Handle conflicts

OR
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Single Master Replication

• 1. By definition, one master

• 2. Reuse WAL, so only minor additional msgs

• 3. Apply local change

• 4. Streaming Replication

• 5. Server in recovery

• 6. Query conflicts/connected to master
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Replication Transport

• What can we achieve if we assume that the 
physical transport of messages stay same, 
only changes are above that layer?

• => Step4 is already complete

• Each target has one source only

• Allows 2 servers in a pair

• More generically, allows multiple servers 
arranged in a circle



© 2ndQuadrant 2012

Generic Logical Replication

• 1. EstablishMaster

• 2. Generate Logical Change Records (LCRs)

• 3. [Apply local change]

• 4. [Transport replication messages]

• 5. Apply

• 6. Conflicts

• [already have this code]
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Physical Streaming Replication

WAL
Sender

DatabaseWAL

WAL
Recvr Startup

DatabaseWAL

User

Master Standby
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Physical Streaming Topologies

Master

Standby

Standby
Relay

Standby
Relay

Standby

Standby

Site 1

Site 2
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Logical Streaming Topologies

Master

Standby

Master

StandbySite 1

Site 2
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Mixed Streaming Topologies
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Standby
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Master
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Logical Streaming Replication

Sending Side Receiving Side

Data

WAL
pg_xlog

Walsender WalreceiverPostgres
Backends

WAL
pg_lcr/$i

 

Filter

Data

WAL
pg_xlog

Apply Process
$i/$dbname

Filter

Catalog
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Logical Streaming Replication

WAL
Sender

DatabaseLCR

WAL
Recvr Apply

DatabaseWAL

User

Transform

Filter

Additional
WAL data

WAL

Source Target
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Benchmark

• Modified pgbench tpc-b (+\sleep 1 ms)

• checkpoint_completion_target = 0.9

• checkpoint_segments = 300

• shared_buffers = 4GB

• 2 Servers * Xeon E3-1275 (4 cores), 16GB 
Ram, 4xSAS (15k disk), Gigabit Ethernet

• 9.2 git @ c2cc5c347 ( 6 Weeks)
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Logical Replication Today
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Logical Replication Tomorrow
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