
© 2ndQuadrant 2012

Future In-Core
Replication for
PostgreSQL

© 2ndQuadrant 2012

Agenda

• Replication Theory

• Architectures

© 2ndQuadrant 2012

Aspects of Theory

• CAP Theorem

• Apply Efficiency

• Conflict Rate

• Replication Lag

© 2ndQuadrant 2012

CAP Theorem

• Consistency

• Availability

• Partition Tolerance

© 2ndQuadrant 2012

Multi-Master
Efficiency Analysis

© 2ndQuadrant 2012

Efficiency Analysis of Apply

• For simplicity, lets assume that the cost of apply
is always proportional to the cost of change...

• If we make changes on one node with cost W,
and then apply those changes on another
node the cost of those changes is kW

• If we have N nodes, then the cost to replay the
changes from all other nodes will be (N-1)kW

• Total workload on any node is W + (N-1)kW

• If we define resource limit as 1, then total work
from N nodes is N / (1 + k(N-1))

© 2ndQuadrant 2012

Apply Efficiency

• With 1 node we do work 1.0

• With 2 nodes we do work 2/(1+k)
– k=1 means it takes exactly same effort to replay

changes as it took to make original change

– k=0.5 means it takes 50% effort to apply changes

k 2 nodes 4 nodes 16 nodes

0.10 1.67 2.86 6.15

0.30 1.25 1.82 2.76

0.50 1.00 1.33 1.78

0.70 0.83 1.00 1.31

1.00 0.67 0.80 0.94

© 2ndQuadrant 2012

Graphs of Apply Efficiency

2.000 3.000 4.000 6.000 8.000 16.000
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.001

0.01

0.05

0.1

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes

E
ffe

ct
iv

e
 N

u
m

b
e

r
o

f N
o

d
e

s

© 2ndQuadrant 2012

What is the Apply Constant, k?

• Physical replication allows changes directly to
data blocks, so we avoid the need to search for
keys via index searches, hence k < 1

• Read Scalability is possible with physical
replication because k is typically about 0.5 and
with only a single master, each node has spare
capacity to do additional read workload

• Physical replication forces us to use just one
node: multi-master required for write scalability

• Physical replication provides best read scalability

© 2ndQuadrant 2012

What is the Apply Constant, k?

• Logical replication uses PK values, so we must
repeat the key search when we apply

– Hard to see how k < 1 is possible in Executor

– Can save effort in parser and planner, but likely
that k is in the range 0.3 to 0.7

• As the number of nodes increases the cost of
apply must also consider the additional costs
of conflict resolution/avoidance

• => Full multi-master replication can't deliver
write scalability on its own

© 2ndQuadrant 2012

Filtered Replication

• If less than 100% of data needs to be replicated
to other nodes, the equation changes

• N / (1 + kf(N-1)) where f is the filter factor

• If f = 0 this means no data changes need to be
sent to other nodes (e.g. full sharding)

– In that case total work from N nodes = N
– If k >= 0.7 sharding becomes essential if we

want write scalability from replication

© 2ndQuadrant 2012

Other Theory

© 2ndQuadrant 2012

Conflict Rate

• Multi-master conflict rate increases as the cube
of the row-level contention [Grey]

• Message delays/offline nodes increases the
conflict rate

• High rates of conflict resolution dramatically
increase the cost of apply

– => conflicts reduce scalability

© 2ndQuadrant 2012

Replication Delay

• If Apply is faster than Master, then replication
can always keep up

• If Master is faster than Apply then replication will
fall behind and replication is useless

• Whenever we measure performance we must
also measure replication delay – if delay
begins to increase then we have reached the
limit of steady state performance

© 2ndQuadrant 2012

Technical Requirements

• Filtered Replication/Sharding
– Filtering must take place on source

– Low values of f required for high scalability

• Highly efficient LCRs/Apply
– Low values of k required

– InCore approaches to apply gain importance

© 2ndQuadrant 2012

Existing Approaches

© 2ndQuadrant 2012

Streaming Replication

• Currently based on binary WAL
– Efficient because WAL is available “for free”

– Efficient apply using direct physical addresses

• Uses libpq so provides full security model

• Efficient use of protocol, with 2-way messaging

• Connection parameters, timeouts

• Modular code, becoming battle hardened

© 2ndQuadrant 2012

Downsides of Physical Rep

• Using WAL means we reuse all the recovery
code, which puts various restrictions

• No xids, No oids, No new WAL

• Master/Standby connected or causes cancels

• Futures Issues
– Harder to replicate just part of a database

– Harder to make cross-version replication work for
online upgrade

© 2ndQuadrant 2012

Slony/Londiste/Bucardo

• Been around a while

• We know they work

• Online upgrades

• Writes allowed on target systems

• Schemas can be slightly different

• Indexes/admin can differ on each node

© 2ndQuadrant 2012

Downsides

• No filtering within a table

• Not part of core

• Many moving parts

• Low performance

• 3+ forks means effort is dissipated

• DDL support

© 2ndQuadrant 2012

Postgres-XC

• Sharded cluster provides write scalability

• Massive changes to codebase
– Likely to remain a fork for some time

– Customers perceive support issues

• Solves single issue only

• No support for widely/geo distributed database

© 2ndQuadrant 2012

Requirements

© 2ndQuadrant 2012

Future Requirements

• In-Core

• Write Scalable

• Geographically Distributed

• Multimaster

• Coherent

• Online Upgrade

• DDL

© 2ndQuadrant 2012

Generic Replication Model

• 1. Establish who is the master

• 2. Generate change messages

• 3. Apply local change

• 4. Transport replication messages

• 5. Apply replicated changes

• 6. Handle conflicts

OR

© 2ndQuadrant 2012

Single Master Replication

• 1. By definition, one master

• 2. Reuse WAL, so only minor additional msgs

• 3. Apply local change

• 4. Streaming Replication

• 5. Server in recovery

• 6. Query conflicts/connected to master

© 2ndQuadrant 2012

Replication Transport

• What can we achieve if we assume that the
physical transport of messages stay same,
only changes are above that layer?

• => Step4 is already complete

• Each target has one source only

• Allows 2 servers in a pair

• More generically, allows multiple servers
arranged in a circle

© 2ndQuadrant 2012

Generic Logical Replication

• 1. EstablishMaster

• 2. Generate Logical Change Records (LCRs)

• 3. [Apply local change]

• 4. [Transport replication messages]

• 5. Apply

• 6. Conflicts

• [already have this code]

© 2ndQuadrant 2012

Physical Streaming Replication

WAL
Sender

DatabaseWAL

WAL
Recvr Startup

DatabaseWAL

User

Master Standby

© 2ndQuadrant 2012

Physical Streaming Topologies

Master

Standby

Standby
Relay

Standby
Relay

Standby

Standby

Site 1

Site 2

© 2ndQuadrant 2012

Logical Streaming Topologies

Master

Standby

Master

StandbySite 1

Site 2

© 2ndQuadrant 2012

Mixed Streaming Topologies

Master

Standby

Standby
Relay

Master

Standby

Standby
Relay

Site 1

Site 2

Standby

Site 3

sync

sync

async

async

async

async

async

© 2ndQuadrant 2012

Logical Streaming Replication

Sending Side Receiving Side

Data

WAL
pg_xlog

Walsender WalreceiverPostgres
Backends

WAL
pg_lcr/$i

Filter

Data

WAL
pg_xlog

Apply Process
$i/$dbname

Filter

Catalog

© 2ndQuadrant 2012

Logical Streaming Replication

WAL
Sender

DatabaseLCR

WAL
Recvr Apply

DatabaseWAL

User

Transform

Filter

Additional
WAL data

WAL

Source Target

© 2ndQuadrant 2012

Benchmark

• Modified pgbench tpc-b (+\sleep 1 ms)

• checkpoint_completion_target = 0.9

• checkpoint_segments = 300

• shared_buffers = 4GB

• 2 Servers * Xeon E3-1275 (4 cores), 16GB
Ram, 4xSAS (15k disk), Gigabit Ethernet

• 9.2 git @ c2cc5c347 (6 Weeks)

© 2ndQuadrant 2012

Logical Replication Today

© 2ndQuadrant 2012

Logical Replication Tomorrow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

