Future In-Core
Replication for
PostgreSQL

2222222222222222

Agenda

* Replication Theory
 Architectures

© 2ndQuadrant 2012

Aspects of Theory

« CAP Theorem

* Apply Efficiency
« Conflict Rate

* Replication Lag

© 2ndQuadrant 2012

CAP Theorem

« Consistency
 Availabllity
» Partition Tolerance

© 2ndQuadrant 2012

Multi-Master
Efficiency Analysis

© 2ndQuadrant 2012

Efficiency Analysis of Apply

» For simplicity, lets assume that the cost of apply
Is always proportional to the cost of change...

If we make changes on one node with cost W,
and then apply those changes on another
node the cost of those changes is kW

If we have N nodes, then the cost to replay the
changes from all other nodes will be (N-1)kW

Total workload on any node is W + (N-1)kW

If we define resource limit as 1, then total work
from N nodes is N/ (1 + k(N-1))

© 2ndQuadrant 2012

Apply Efficiency

 With 1 node we do work 1.0

» With 2 nodes we do work 2/(1+k)

— k=1 means it takes exactly same effort to replay
changes as it took to make original change

— k=0.5 means it takes 50% effort to apply changes

Kk 2nodes 4 nodes 16 nodes

0.10 1.67 2.86 6.15
0.30 1.25 1.82 2.76
0.50 1.00 1.33 1.78
0.70 0.83 1.00 1.31

1.00 0.67 0.80 0.94

© 2ndQuadrant 2012

Graphs of Apply Efficiency

18.00
16.00
14.00
—8— 0.001
) 12.00 — 0.01
g 0.05
£ 1000 —a—0.1
5 ——02
2 0.4
2 8.00 —— 0.6
2 08
é —— 1
i 6.00 1o
—— 1 4
v = ’
— —>
2.00 p=—=x < < 0
= —— - = 2 — 9
0.00
2.000 3.000 4.000 6.000 8.000 16.000

Number of Nodes

© 2ndQuadrant 2012

@ What is the Apply Constant, k?

* Physical replication allows changes directly to
data blocks, so we avoid the need to search for
keys via index searches, hence k < 1

« Read Scalabillity is possible with physical
replication because Kk is typically about 0.5 and
with only a single master, each node has spare

capacity to do additional read work

* Physical replication forces us to use |

oad
ust one

node: multi-master required for write scalability
* Physical replication provides best read scalability

© 2ndQuadrant 2012

@ What is the Apply Constant, k?

» Logical replication uses PK values, so we must
repeat the key search when we apply

— Hard to see how k < 1 is possible in Executor

— Can save effort in parser and planner, but likely
that k is in the range 0.3 to 0.7

 As the number of nodes increases the cost of
apply must also consider the additional costs
of conflict resolution/avoidance

« => Full multi-master replication can’'t deliver
write scalability on its own

© 2ndQuadrant 2012

Filtered Replication

* If less than 100% of data needs to be replicated
to other nodes, the equation changes

N/ (1+ kf(N-1)) where f is the filter factor

o |If f =0 this means no data changes need to be
sent to other nodes (e.g. full sharding)

—In that case total work from N nodes = N

—If k >= 0.7 sharding becomes essential if we
want write scalability from replication

© 2ndQuadrant 2012

Other Theory

© 2ndQuadrant 2012

Conflict Rate

 Multi-master conflict rate increases as the cube
of the row-level contention [Grey]

* Message delays/offline nodes increases the
conflict rate

» High rates of conflict resolution dramatically
increase the cost of apply

— => conflicts reduce scalability

© 2ndQuadrant 2012

Replication Delay

* If Apply is faster than Master, then replication
can always keep up

* |f Master is faster than Apply then replication will
fall behind and replication is useless

* \Whenever we measure performance we must
also measure replication delay — if delay
begins to increase then we have reached the
limit of steady state performance

© 2ndQuadrant 2012

Technical Requirements

 Filtered Replication/Sharding

— Filtering must take place on source
— Low values of f required for high scalability

» Highly efficient LCRs/Apply

— Low values of k required
— InCore approaches to apply gain importance

© 2ndQuadrant 2012

Existing Approaches

© 2ndQuadrant 2012

Streaming Replication

« Currently based on binary WAL

— Efficient because WAL is available “for free”
— Efficient apply using direct physical addresses

Uses libpg so provides full security model
Efficient use of protocol, with 2-way messaging
Connection parameters, timeouts

Modular code, becoming battle hardened

© 2ndQuadrant 2012

Downsides of Physical Rep

« Using WAL means we reuse all the recovery
code, which puts various restrictions

* No xids, No oids, No new WAL
« Master/Standby connected or causes cancels

 Futures Issues

— Harder to replicate just part of a database

— Harder to make cross-version replication work for
online upgrade

© 2ndQuadrant 2012

Slony/Londiste/Bucardo

* Been around a while

* We know they work

* Online upgrades

» Writes allowed on target systems
Schemas can be slightly different
Indexes/admin can differ on each node

© 2ndQuadrant 2012

Downsides

 No filtering within a table

Not part of core

Many moving parts

Low performance

3+ forks means effort is dissipated
DDL support

© 2ndQuadrant 2012

Postgres-XC

« Sharded cluster provides write scalability

» Massive changes to codebase

— Likely to remain a fork for some time
— Customers perceive support issues

» Solves single issue only
* No support for widely/geo distributed database

© 2ndQuadrant 2012

Requirements

© 2ndQuadrant 2012

Future Requirements

* In-Core

» Write Scalable

» Geographically Distributed
* Multimaster

« Coherent

* Online Upgrade

« DDL

© 2ndQuadrant 2012

Generic Replication Model

» 1. Establish who is the master
» 2. Generate change messages
» 3. Apply local change

4. Transport replication messages OR
5. Apply replicated changes

6. Handle conflicts 4

© 2ndQuadrant 2012

Single Master Replication

* 1. By definition, one master

« 2. Reuse WAL, so only minor additional msgs
» 3. Apply local change

« 4. Streaming Replication

« 5. Server in recovery

» 6. Query conflicts/connected to master

© 2ndQuadrant 2012

Replication Transport

« What can we achieve if we assume that the
physical transport of messages stay same,
only changes are above that layer?

=> Step4 is already complete
Each target has one source only
Allows 2 servers in a pair

More generically, allows multiple servers
arranged in a circle

© 2ndQuadrant 2012

Generic Logical Replication

1. EstablishMaster

« 2. Generate Logical Change Records (LCRs)
3. [Apply local change]

» 4 [Transport replication messages]

* 5. Apply
* 6. Conflicts

[already have this code]

© 2ndQuadrant 2012

@ Physical Streaming Replication

Master Standby
AL
l s
| 4

~

N/ ~ N ~ 4
WAL Database WAL Database

< .

-~ -

© 2ndQuadrant 2012

Physical Streaming Topologies

Standby Standby
Relay Relay
Site 1 @

© 2ndQuadrant 2012 Site 2

Logical Streaming Topologies

@ @
Site 1 @

© 2ndQuadrant 2012 Site 2

Mixed Streaming Topologies

async

async Site 3

async Standby
Relay Sync

sync Standby

Relay async

Site 1 async

© 2ndQuadrant 2012 Slte 2

Logical Streaming Replication

Postgres
Backen

Walsender

Fiélter

Walreceiver

Apply Process
-_$i/$dbname
D)

Filter T 4

ae
WAL
pg ler/$i
Data w
Data
Sending Side Receiving Side

© 2ndQuadrant 2012

Logical Streaming Replication

Source

liter

Target

WAL

© 2ndQuadrant 2012

Database

-

ecvr

WAL

~ A

Database

-

Benchmark

* Modified pgbench tpc-b (+\sleep 1 ms)
» checkpoint_completion target = 0.9

» checkpoint_segments = 300

» shared buffers = 4GB

« 2 Servers * Xeon E3-1275 (4 cores), 16GB
Ram, 4xSAS (15k disk), Gigabit Ethernet

9.2 git @ c2ccdc347 (6 Weeks)

© 2ndQuadrant 2012

TFS

© 2ndQuadrant 2012

18868

9080

g08a

7888

60808

o080

48808

Jooaa

208808

18848

pebench transactionsfsec

sl'.clmul:lall:nnfzI -
londiste — e]
londiste::lag
1 1 1 1 1
4 6 8 18 12 14 16
Clients

Logical Replication Today

128

Lag in seconds

Logical Replication Tomorrow

pebench transzactionsssec

186868 , , , , , , , 128
standalone -

9668 i londiste —— T

londiste::lag f= §

£AAA | bdr T -

f
bdr::zlag -~

7oee | /'ﬂ .

E]e]) u i
£
E
7] 500808 = A (=]
& D
= £
qpe8 | j . =
A =]
b
sees | 3 . -

opol | . ¥ S 1

1800 = * 1

H T P— H
a 2 4 6 8 18 12 14 16
Clients

© 2ndQuadrant 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

