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Agenda

* Replication Theory
 Architectures
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Aspects of Theory

« CAP Theorem

* Apply Efficiency
« Conflict Rate

* Replication Lag
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CAP Theorem

« Consistency
 Availabllity
» Partition Tolerance
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Multi-Master
Efficiency Analysis
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Efficiency Analysis of Apply

» For simplicity, lets assume that the cost of apply
Is always proportional to the cost of change...

If we make changes on one node with cost W,
and then apply those changes on another
node the cost of those changes is kW

If we have N nodes, then the cost to replay the
changes from all other nodes will be (N-1)kW

Total workload on any node is W + (N-1)kW

If we define resource limit as 1, then total work
from N nodes is N/ (1 + k(N-1))
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Apply Efficiency

 With 1 node we do work 1.0

» With 2 nodes we do work 2/(1+k)

— k=1 means it takes exactly same effort to replay
changes as it took to make original change

— k=0.5 means it takes 50% effort to apply changes

Kk 2nodes 4 nodes 16 nodes

0.10 1.67 2.86 6.15
0.30 1.25 1.82 2.76
0.50 1.00 1.33 1.78
0.70 0.83 1.00 1.31

1.00 0.67 0.80 0.94
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Graphs of Apply Efficiency
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@ What is the Apply Constant, k?

* Physical replication allows changes directly to
data blocks, so we avoid the need to search for
keys via index searches, hence k < 1

« Read Scalabillity is possible with physical
replication because Kk is typically about 0.5 and
with only a single master, each node has spare

capacity to do additional read work

* Physical replication forces us to use |

oad
ust one

node: multi-master required for write scalability
* Physical replication provides best read scalability
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@ What is the Apply Constant, k?

» Logical replication uses PK values, so we must
repeat the key search when we apply

— Hard to see how k < 1 is possible in Executor

— Can save effort in parser and planner, but likely
that k is in the range 0.3 to 0.7

 As the number of nodes increases the cost of
apply must also consider the additional costs
of conflict resolution/avoidance

« => Full multi-master replication can’'t deliver
write scalability on its own

© 2ndQuadrant 2012



Filtered Replication

* If less than 100% of data needs to be replicated
to other nodes, the equation changes

N/ (1+ kf(N-1)) where f is the filter factor

o |If f =0 this means no data changes need to be
sent to other nodes (e.g. full sharding)

—In that case total work from N nodes = N

—If k >= 0.7 sharding becomes essential if we
want write scalability from replication
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Other Theory
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Conflict Rate

 Multi-master conflict rate increases as the cube
of the row-level contention [Grey]

* Message delays/offline nodes increases the
conflict rate

» High rates of conflict resolution dramatically
increase the cost of apply

— => conflicts reduce scalability
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Replication Delay

* If Apply is faster than Master, then replication
can always keep up

* |f Master is faster than Apply then replication will
fall behind and replication is useless

* \Whenever we measure performance we must
also measure replication delay — if delay
begins to increase then we have reached the
limit of steady state performance
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Technical Requirements

 Filtered Replication/Sharding

— Filtering must take place on source
— Low values of f required for high scalability

» Highly efficient LCRs/Apply

— Low values of k required
— InCore approaches to apply gain importance
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Existing Approaches
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Streaming Replication

« Currently based on binary WAL

— Efficient because WAL is available “for free”
— Efficient apply using direct physical addresses

Uses libpg so provides full security model
Efficient use of protocol, with 2-way messaging
Connection parameters, timeouts

Modular code, becoming battle hardened
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Downsides of Physical Rep

« Using WAL means we reuse all the recovery
code, which puts various restrictions

* No xids, No oids, No new WAL
« Master/Standby connected or causes cancels

 Futures Issues

— Harder to replicate just part of a database

— Harder to make cross-version replication work for
online upgrade
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Slony/Londiste/Bucardo

* Been around a while

* We know they work

* Online upgrades

» Writes allowed on target systems
Schemas can be slightly different
Indexes/admin can differ on each node
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Downsides

 No filtering within a table

Not part of core

Many moving parts

Low performance

3+ forks means effort is dissipated
DDL support
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Postgres-XC

« Sharded cluster provides write scalability

» Massive changes to codebase

— Likely to remain a fork for some time
— Customers perceive support issues

» Solves single issue only
* No support for widely/geo distributed database
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Requirements
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Future Requirements

* In-Core

» Write Scalable

» Geographically Distributed
* Multimaster

« Coherent

* Online Upgrade

« DDL
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Generic Replication Model

» 1. Establish who is the master
» 2. Generate change messages
» 3. Apply local change

4. Transport replication messages OR
5. Apply replicated changes

6. Handle conflicts 4

© 2ndQuadrant 2012



Single Master Replication

* 1. By definition, one master

« 2. Reuse WAL, so only minor additional msgs
» 3. Apply local change

« 4. Streaming Replication

« 5. Server in recovery

» 6. Query conflicts/connected to master
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Replication Transport

« What can we achieve if we assume that the
physical transport of messages stay same,
only changes are above that layer?

=> Step4 is already complete
Each target has one source only
Allows 2 servers in a pair

More generically, allows multiple servers
arranged in a circle
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Generic Logical Replication

1. EstablishMaster

« 2. Generate Logical Change Records (LCRs)
3. [Apply local change]

» 4 [Transport replication messages]

* 5. Apply
* 6. Conflicts

[already have this code]
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@ Physical Streaming Replication
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Physical Streaming Topologies

Standby Standby
Relay Relay
Site 1 @
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Logical Streaming Topologies

@ @
Site 1 @
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Mixed Streaming Topologies

async

async Site 3

async Standby
Relay Sync

sync Standby

Relay async

Site 1 async
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Logical Streaming Replication
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Logical Streaming Replication

Source

liter

Target

WAL
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Benchmark

* Modified pgbench tpc-b (+\sleep 1 ms)
» checkpoint_completion target = 0.9

» checkpoint_segments = 300

» shared buffers = 4GB

« 2 Servers * Xeon E3-1275 (4 cores), 16GB
Ram, 4xSAS (15k disk), Gigabit Ethernet

9.2 git @ c2ccdc347 ( 6 Weeks)
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TFS
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Logical Replication Tomorrow
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