Range Types:
Your Life Will Never Be The Same

Jonathan S. Katz
CTO, VenueBook
September 18, 2012

What’s in a Range?

 Conference schedule

 Pick a number from 1-10
— Integer or real?

* Budget for buying a new laptop

Ranges are Everywhere...

e Scheduling
* Probability
* |ntersections of ordered data

How Do We Deal With Ranges?

CREATE TABLE employee schedule (
1d serial,
employee 1d 1nteger REFERENCES
employees (1d),
start time timestamptz,

end time timestamptz

Who is on duty at...

SELECT *
FROM employee schedule
WHERE
employee 1d = 24 AND
CURRENT TIMESTAMP BETWEEN start time AND end time;

—-— start time <= CURRENT TIMESTAMP <= end time

Can | schedule an employee shift?

* Easy!

SELECT EXISTS (1d)
FFROM employee schedule
WHERE
employee 1d = 24 AND
(

'2012-09-18 10:00" <= start time AND
'2012-09-18 11:00" >= start time AND
'2012-09-18 10:00" <= end time AND
'2012-09-18 11:00" <= end time

) OR (—--..wait this 1s really hard

Why Overlaps Are Difficult

In PostgreSQL 9.1, Can |...

* Use a built-in function to determine if my
ranges overlap?

* Easily create a composite type and add logic to
recognize the ranges?

* Change to a different database software that
makes the problem easier?

...can someone smarter than me
make my life easier?

..Yes!l!l

projects / postgresql.git / commit

summary | shortlog | log | commit | commitdiff | tree
(parent: 4334289) | patch

Support range data types.

author Heikki Linnakangas <heikki.linnakangas@iki.fi>
Thu, 3 Nov 2011 11:16:28 +0000 (13:16 +0200)

committer Heikki Linnakangas <heikki.linnakangas@iki.fi>
Thu, 3 Nov 2011 11:42:15 +0000 (13:42 +0200)

commit 4429f6a9%e3el2bb4af6e3677fbc78cd80£160252

tree aze272129e5515£7e£2£4e09989bdd£f0£d8158ea tree | snapshot
parent 43342891861cc2d08deazblc8bl90else5a36551 commit | diff

Fupport range data types.l@

Selectivity estimation functions are missing for some range type operators,
which is a TODO.

Jeff Davis

10

Built-In Ranges

INTARANGE (1nteger)
INTSRANGE (bigint)
NUMRANGE (numeric)

TSRANGE (timestamp without time
zone)

TSTZRANGE (timestamp with time
zone)

DATERANGE (date)

Range Bounds

* Ranges can be inclusive, exclusive or both
 Math review:

* Can also be empty

Ranges...Unbound

* Ranges can be infinite
—[2,) => 2 £ x < o
— (,2] => -~ < x £ 2

 CAVEAT EMPTOR

— “infinity” has special meaning with timestamp
ranges

— [today,) = [today,]

— [today, ‘infinity’) <> [today,
‘infinity’]

Constructing Ranges
e Simple!

test=# SELECT '[1,10]'::intdrange;

intd4range

[1,11)

(1 row)

Constructing Ranges

test=# SELECT '[2012-03-28, 2012-04-02]'::daterange;

daterange

[2012-03-28,2012-04-03)

(1 row)

Constructing Ranges

e Constructor functions too
— Defaults to ‘[)’

test=# SELECT numrange (9.0, 9.5);

numrange

[9.0,9.5)

(1 row)

Constructing Ranges

test=# SELECT tsrange('2012-04-01 00:00:00', '2012-04-01
12:00:00', '[1"):

tsrange

["2012-04-01 00:00:00","2012-04-01 12:00:00"]

(1 row)

Using Ranges

Normal comparison operations

SELECT int4range(100,200) = intd4range(100,200);
-— true
SELECT int4range (100,200) <> intd4range (200,300);
-— true
SELECT int4range(100,200) < intd4range(200,300);
-— true
SELECT 1nt4range (100,200) <= intéd4range (200,300);
—-— true
SELECT 1nt4range (100,200) >= intéd4range (200,300);
—-— false

SELECT int4range(100,200) > intd4range (200,300);
—-—- false

Why Your Life Will Change

* Let’s see the magic with an example

e Shopping for a used car

— Cars listed with a price range
— Have a min/max budget

Inspect Our Data

* Sort by range lower bound

test=# SELECT * FROM cars ORDER BY lower (cars.price range);

id | name | price range
b o
2 | Buick Skylark | [2000,4001)
3 | Pontiac GTO | [5000,7501)
4 | Chevrolet Camero | [10000,12001)
5 | Ford Mustang | [11000,15001)
6 | Lincoln Continental | [12000,14001)
7 | BMW M3 | [35000,42001)
8 | Audi RS4 | [41000,45001)
9 | Porsche 911 | [47000,58001)
10 | Lamborghini LP700 | [385000,400001)

(9 rows)

Car Shopping:
Conceptually Simple

$14.5|<§ $15.5K

$12K § $14K

$11K $12K $13K $15K $16K $17K

$13.5K $14.5K
I —— :

$12K | | $16K

21

Car Shopping: Nightmarishly Complicated

« Budget of $13,000 - $15,000, find cars price in that range

SELECT *
FROM cars
WHERE
(
cars.min price < 13000 AND
cars.min price < 15000 AND
cars.max_price 2 13000 AND
cars.max_price < 15000
) OR
(
cars.min price < 13000 AND
cars.min price < 15000 AND
cars.max_price 2 13000 AND
cars.max_price 2 15000
) OR
(
cars.min price 2 13000 AND
cars.min price < 15000 AND
cars.max_price 2 13000 AND
cars.max_price < 15000
) OR
(
cars.min price 2 13000 AND
cars.min price < 15000 AND
cars.max_price 2 13000 AND
cars.max_price 2 15000

)
ORDER BY cars.min price;

Car Shopping: Magically Painless

e Budget of $13,000 - $15,000, find cars price in
that range

SELECT *
FROM cars
WHERE cars.price range && int4range (13000, 15000, '[]"')

ORDER BY lower (cars.price range);

[11000,15001)
[12000,14001)

5 | Ford Mustang
© | Lincoln Continental

(2 rows)

In more details

¢ &&
— the “overlap” operator
— take two ranges: [x,y] and [a,b]

(a £ X AND a £ y AND b 2 x AND b £ y) OR
(a £ x AND a £y AND b 2 x AND b 2 y) OR
(a > x AND a < y AND b > x AND b < y) OR
(a > x AND a <y ANDDb > x AND b > v)

(Math for the win: inverse only two lines)

The Saver

* Find cars whose price does not exceed $13,000

SELECT *
FROM cars
WHERE cars.price range << inté4range (13000, 15000)

ORDER BY lower (cars.price range);

id | name | price range
b o
2 | Buick Skylark | [2000,4001)

3 | Pontiac GTO | [5000,7501)

4 | Chevrolet Camero | [10000,12001)

The Cautious

e Budget of $13,000 - $15,000, but want to see cheaper
options

SELECT *

FROM cars

WHERE cars.price range &< int4range (13000, 15000)
ORDER BY lower (cars.price range);

id | name | price range
o o e _
2 | Buick Skylark | [2000,4001)

3 | Pontiac GTO | [5000,7501)

4 | Chevrolet Camaro | [10000,12001)

5 | Ford Mustang | [11000,15001)

6 | Lincoln Continental | [12000,14001)

(5 rows)

The Dreamer

e Budget of $13,000 - $15,000, but want to see
what lies beyond...

SELECT *

FROM cars

WHERE cars.price range >> intdrange (13000, 15000)
ORDER BY lower (cars.price range);

id | name | price range
e e o
7 | BMW M3 | [35000,42001)

8 | Audi RS4 | [41000,45001)
9 | Porsche 911 | [47000,58001)
|0

10 | Lamborghini LP700 385000,400001)

(4 rows)

Determine Negotiating Window

* For cars in my budget, what prices am | looking
at?

SELECT *,
cars.price range * int4range (13000, 15000) AS price window
FROM cars
WHERE cars.price range && intdrange (13000, 15000)
ORDER BY lower (cars.price range);

id | name | price range | price window
R fom - fom
5 | Ford Mustang | [11000,15001) | [13000,15000)
© | Lincoln Continental | [12000,14001) | [13000,14001)

(2 rows)

Are Range Queries Fast?

e Well...

QUERY PLAN

Sort (cost=11.76..11.77 rows=1 width=552)
Sort Key: (lower (price range))
-> Seqg Scan on cars (cost=0.00..11.75 rows=1 width=552)
Filter: (price range && '[13000,15001) '::int4range)

« But wait, | didn’t add any indexing!

Range Indexes

* Creating a GiST index on ranges speeds up
gueries with these operators:

&&
<d
@>
<<
>>
|
&<
&>

Range Indexes

CREATE INDEX cars price range idx ON cars USING gist (price_range) ;
—-— EXPLAIN $PREVIOUS_QUERY

QUERY PLAN

Sort (cost=129.66..129.87 rows=84 width=49)

Sort Key: (lower (price range))
-> Bitmap Heap Scan on cars2 (cost=4.95..126.97 rows=84 width=49)
Recheck Cond: (price range && '[13000,15000) '::int4range)

-> Bitmap Index Scan on cars2 price range 1idx
(cost=0.00..4.93 rows=84 width=0)

Index Cond: (price range && '[13000,15000)"'::1nt4range)
(6 rows)

* Note: | used a more populous table to make the index scan to occur

31

Scheduling

e ..NOW iS super easy’
* Unigue constraints to save the day!

Scheduling

CREATE TABLE travel log (

id serial PRIMARY KEY,

name varchar (255),

travel range daterange,

EXCLUDE USING gist (travel range WITH &&)
) ;

INSERT INTO travel log (name, trip range) VALUES
('Boston', daterange('2012-03-07', '2012-03-09"));

INSERT INTO travel log (name, trip range) VALUES
('"Chicago', daterange('2012-03-12', '2012-03-17"));

Scheduling

test=# INSERT INTO travel log (name, trip range)
VALUES ('Austin', daterange('2012-03-16",
'2012-03-18")) ;

ERROR: conflicting key value violates exclusion
constraint "travel log trip range excl"

DETAIL: Key (trip range)=([2012-03-16,2012-03-18))
conflicts with existing key
(trip range)=([2012-03-12,2012-03-17)).

* Easy.

And That’s Not All!

* Ranges can be extended — | kid you not

CREATE TYPE inetrange AS RANGE (
SUBTYPE = inet

) ;
SELECT '192.168.1.8'::inet <@ inetrange ('192.168.1.1', '192.168.1.10");

?column?

SELECT '192.168.1.20"'::inet <@ inetrange('192.168.1.1', '192.168.1.10");

?column?

In the Wild?

\/enue.., VURN Venue Search Login Signup Add My Venue

Discover & Book your Ideal Venue

> Venue Search SearCh Results

Type of Event Found 214 Venues

0000000000000 00
Date
9 [18[2012 ™ ' Village Pourhouse - Downtowp

$0 — $3,840

Guests Budget

» [} ™ Private Rooms: Yes
2000 o R, Total Capacity: 200
. AT | iy - Location: SoHo, TriBeCa

Type: Bar, Restaurant

Filter Search Results G
Advanced Search
Ben and Jack's Steakhouse-a4t

$1,600 — $5,760

Neighborhoods (V]

— Private Rooms: Yes
Type of Venue (V] Total Capacity: 250

| Location: Midtown East
Venue Features (V] Type: Restaurant

36

For More Information

http://www.postgresgl.org/docs/9.2/static/
rangetypes.html

http://www.postgresgl.org/docs/9.2/static/
functions-range.html

http://www.postgresgl.org/docs/9.2/static/
sgl-createtype.html

http://wiki.postgresql.org/wiki/RangeTypes

37

Conclusion

* |f you are not completely smitten by range
types, then | have failed at explaining them

* Upgrade to PostgreSQL 9.2 — now.
— (or this coming Monday [9/24/2012])

Thanks To...

 Jeff Davis for implementing range types

e Alexander Korotkov for GiST improvements for
handling range type data

Contact

 Jonathan S. Katz
e jonathan@venuebook.com
e @jkatz05

40

