
Poor Man's Parallel
Processing

PGConf US 2015
Corey Huinker

What is this talk about?
Parallel Processing in Postgres.

What this talk is really about?
How wonderfully hackable PostgreSQL is.

Problem: Lack of parallel query in
Postgres is hampering adoption.
So, do something about it.

Aren't there available commercial
offerings?
Yes, but that's no fun.

What about async sharding
(PL/Proxy, etc)?

● Have to build your database around the sharding
mechanism.

● Nontechnical people laugh when you say "sharding".

Common technique: Unix Parallel
● Break up your query into smaller queries.

○ One worker handles A-C, next handles D-F...
● Run them separately, combine the results yourself.

○ Ick.

The Goal:
● Something that lets you make something close to an ad-

hoc query.
● Leveraging multiple CPUs on this machine.
● And maybe that other machine too.
● And have the results coalesced into something that can

itself be queried (like a table function).
● Without leaving the query.

Challenges for general parallelism:
● How should I best break up this big query into smaller

ones?
○ With no other information, most systems just do a

hash distribution.
● At what point would I overload this machine with worker

processes?
● Am I just creating a lot of process/network traffic for

myself?
○ Poor distribution means lots of interprocess chatter.

PMPP answers none of these.
● So why aren't they in PostgreSQL already?

○ Market is littered with problematic parallel half-
measures.

○ PostgreSQL Hackers want to get it right the first
time.

○ Perfect is the enemy of good in this case.
○ Perfect will be nice when we get it (9.5? 9.6?).
○ In the mean time, here's a half-measure that works

in limited circumstances if you're careful.

What does PMPP look like?

function pmpp.distribute(p_row_type anyelement,

 p_connection text,

 p_sql_list text[],

 p_cpu_multiplier float default 1.0)

 returns setof anyelement

And for when you want to query multiple machines:

function pmpp.distribute(p_row_type anyelement,

 p_query_manifest in json)

 returns setof anyelement

When all of your data is on the same machine, but you want to use multiple CPUs:

What does PMPP look like? Zoom in.

function pmpp.distribute(p_row_type anyelement,

 p_connection text,

 p_sql_list text[],

 p_cpu_multiplier float default 1.0)

 returns setof anyelement

And for when you want to query multiple machines:

function pmpp.distribute(p_row_type anyelement,

 p_query_manifest in json)

 returns setof anyelement

When all of your data is on the same machine, but you want to use multiple CPUs:

Any postgres DSN stringA list of SQL statements
to be executed.

What % of CPUs to
allocate.

There's a lot going on
here.Results will match

structure of p_row_type

polymorphic type-spec

What's this null::thingamabob
business?

● It's a polymorphic function.
● It gives the shape of the result set that the outer query

can expect to receive.
● Is null by convention

Example: single machine queries
CREATE TYPE temp_int_row_t (x int);

SELECT

sum(t.x) as pointless_aggregation

FROM

pmpp.distribute(null::temp_int_row_t,

'dbname=mycurrentdb',

ARRAY['select 1',

'select 2',

'select 3']) t;

Result types must be created ahead of
time, but all existing table structures are
themselves a type.

"Loopback" connections are the
most common usage. Beware that
the main connection may not share
permissions with the called one.

"row spec"...we'll get to that.

Array of query
strings.

Example: Query List via Meta-SQL
CREATE TYPE temp_int_row_t (x int);

SELECT

sum(t.x) as overall_rowcount

FROM

pmpp.distribute(null::temp_int_row_t,

'dbname=mycurrentdb',

ARRAY(SELECT

'select count(*) from ' || l.table_name

FROM

partition_list l)) t;

Using SQL to generate
SQL is a very powerful
way to generate worker
commands. The
array() cast helps
visually separate the
inner and outer queries.

Just here for an example, you don't have to
redefine it every time.

Example multi-machine query
SELECT

sum(t.x) as overall_rowcount

FROM

pmpp.distribute(null::temp_int_row_t,

'[{"connection":"local_dsn", "queries":["SELECT sum(page_loads)
FROM video_ads WHERE client = ''CUSTOMER1'' AND ad_date >= ''2014-01-
01''"], "multiplier":"0.5"},{"connection":"archive_dsn", "queries":
["SELECT sum(page_loads) FROM video_ads WHERE client = ''CUSTOMER1''
AND ad_date < ''2014-01-01''"],"workers":"2"}]'::jsonb) t;

WHA???

Wait, what was that JSON about?
[{"connection":"local_dsn",

 "queries":[

 "SELECT sum(page_loads) FROM video_ads

 WHERE client = 'CUSTOMER1'

 AND ad_date >= '2014-01-01'"],

 "multiplier":"0.5"},

{ "connection":"archive_dsn",

 "queries":[

"SELECT sum(page_loads) FROM video_ads

WHERE client = 'CUSTOMER1'

AND ad_date < '2014-01-01'"],

 "workers":"2"}]

Each section has connection info, like the local version.

We'd normally expect a lot of queries in
at least one of the sections, but this is
just an example.

We know it has PMPP installed and we want to
use AT MOST half the CPUs.

Might not have PMPP installed, might not even be real PostgreSQL...

The queries have to all have the
same shape of result set.

Did you try anything other than
polymorphic functions? - Yes: JSON
SELECT

sum((t.json_data->>'row_count')::bigint) as row_count
FROM

mpp_dist_json(
ARRAY(SELECT

'select count(*) as row_count from partitions.'
 || partition_name

 FROM
partition_metadata_table

 WHERE
table_name = 'my_partitioned_table')
) t;

It's not the prettiest, and the decompose-recompose overhead increases with the number of columns.

Re-composition
acrobatics and
typecasting

Project name has changed over time

Meta-SQL is basically
the same.

Did you try anything other than
polymorphic functions? - HSTORE
SELECT

sum((t.hstore_data->'row_count')::bigint)
FROM

pmpp_dist_hstore(
array(SELECT

'select count(*) as row_count from partitions.'
 || partition_name

 FROM
partition_metadata_table

 WHERE
table_name = 'my_partitioned_table')
) t;

Basically the same tradeoffs as JSON/JSONB.

What's under the hood?
● DBLINK extension

○ dblink_send_query() and dblink_get_result() async functions
○ This module lacked ability to do polymorphic result sets.

■ So I wrote a patch for that.
■ Ain't hackability great?

● A pg_attribute query to create table spec
○ FROM dblink_get_result(x) AS t(col1 int, …)
○ Query has to be constructed dynamically once, and re-run once per subquery.
○ PL/PGSQL lacks a PREPARE statement

■ Thought about moving to plv8 or C.
○ Will still need this until DBLINK supports polymorphism.

Under the hood: pg_attribute query
WITH x as (
 select a.attname || ' ' || pg_catalog.format_type(a.atttypid,

a.atttypmod) as sql_text
 from pg_catalog.pg_attribute a
 where a.attrelid = pg_typeof(p_row_type)::text::regclass
 and a.attisdropped is false
 and a.attnum > 0
 order by a.attnum)
SELECT format('select * from dblink_get_result($1) as t(%s)',

string_agg(x.sql_text,','))
INTO fetch_results_query
FROM x;

Runtime: about 1ms.

What's under the hood?
● PL/PGSQL

○ one FOR LOOP
■ really just there to look for failures in initial query distribution.

○ and one WHILE LOOP
■ looking for queries that have finished, launching new queries as old ones complete,

closing down connections
● pg_sleep() with exponential backoff

○ A surprising amount of iteration can be handled in SQL itself.
● temp tables for work queue management, connection management.

○ Wasn't appreciably slower than PL/PGSQL arrays and state variables.
○ Cleaner code, likely very easy to port to C/v8, etc.

How do you know how many
workers to spawn?
By cheating! Hijack the copy command to invoke a command line.
create temporary table nproc_result (nproc integer);
copy nproc_result from program ' nproc';
select

format('$$ select greatest(1,(p_multiplier * %s)::integer)$$',
nproc) as nproc_sql

from
nproc_result

\gset

create or replace function pmpp.num_cpus(p_multiplier in float default
1.0) returns integer
language sql immutable as :nproc_sql;

So now you've got an immutable function: ultra-low overhead.

Sooooo not portable.
Using SQL to generate SQL again

Saves each column of the one-row result set as a
same-named variable

Using PSQL vars in SQL definitions.
No $$ quotations needed.

How are you using it?
● ETL

○ Partition refresh in place of python & multiprocessing
○ Index Rebuilds

● Deployment scripts
○ Partition creation

● Big-Question queries
○ our data is timeseries, so asking questions across all time can be

compute intensive. Partial sums make it more manageable.
● In Development

○ Three-tiered data storage
■ in-memory cache accessed via custom FDW
■ Vertica for recent data
■ Redshift for archive data

So many questions!
Q. So this would put passwords in the clear, huh?

● Yup, anyone with pg_stat_activity visibility on the initiating machine could see them.

Q. How do you know how many connections are available?
● You don't! (See: Running With Scissors)

Q. What if the other machine doesn't have pmpp installed?
What if the other machine isn't a "real" postgres (Vertica, Redshift)?

● Use the num_workers parameter instead of the multiplier.

Q. What's a good multiplier to use?
● 1.0 on AWS EC2s with local SSD drives.

○ Yes, cpu multipliers on Oracle are usually 2x to 4x the number of CPUs.
○ Our queries are very sum-oriented.

Future Direction
1. Put PMPP on PGXN
2. CPU detection extension so that we don't rely on nproc existing anymore.
3. Get patch to DBLINK accepted into 9.5.
4. Become obsolete.

