
Lists and Recursion and Trees
Oh My!
FOSDEM, Brussels, February 7, 2010

Copyright © 2010
David Fetter david.fetter@pgexperts.com
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

Better, Faster TPS Reports

New!
Reach Outside the Current Row

Better, Faster TPS Reports

• Windowing Function
– Operates on a window
– Returns a value for each row
– Calculates value from the rows in the window

• You can use…
– New window functions
– Existing aggregate functions
– User-defined window functions
– User-defined aggregate functions

Better, Faster TPS Reports

[Aggregates] SELECT key, SUM(val) FROM tbl GROUP BY key;

Better, Faster TPS Reports

[Windowing Functions] SELECT key, SUM(val) OVER (PARTITION BY key) FROM tbl;

Better, Faster TPS Reports

ROW_NUMBER (Before)
SELECT
 e1.empno,
 e1.depname,
 e1.salary,
 count(*) AS row_number
FROM
 empsalary e1
JOIN
 empsalary e2
 ON (e1.empno < e2.empno)
GROUP BY e1.empno, e1.depname, e1.salary
ORDER BY e1.empno DESC;

ROW_NUMBER (Before)
OOPS!

 empno | depname | salary | row_number
-------+-----------+--------+------------
 8 | develop | 6000 | 1
 6 | sales | 5500 | 2

 11 | develop | 5200 | 4
 10 | develop | 5200 | 4
 1 | sales | 5000 | 5

 3 | sales | 4800 | 7
 4 | sales | 4800 | 7
 9 | develop | 4500 | 8
 7 | develop | 4200 | 9
 2 | personnel | 3900 | 10
 5 | personnel | 3500 | 11
(11 rows)

ROW_NUMBER (After)

SELECT
 empno,
 depname,
 salary,
 row_number() OVER (
 ORDER BY salary DESC NULLS LAST
)
FROM
 empsalary
ORDER BY salary DESC;

ROW_NUMBER (After)

Yippee!
 empno | depname | salary | row_number
-------+-----------+--------+------------
 8 | develop | 6000 | 1
 6 | sales | 5500 | 2
 10 | develop | 5200 | 3
 11 | develop | 5200 | 4
 1 | sales | 5000 | 5
 3 | sales | 4800 | 6
 4 | sales | 4800 | 7
 9 | develop | 4500 | 8
 7 | develop | 4200 | 9
 2 | personnel | 3900 | 10
 5 | personnel | 3500 | 11
(11 rows)

More Ranking
SELECT
 empno,
 depname,
 salary,
 row_number() OVER (
 ORDER BY salary DESC NULLS LAST
),
 rank() OVER (
 ORDER BY salary DESC NULLS LAST
),
 dense_rank() OVER (
 ORDER BY salary DESC NULLS LAST
)
FROM
 empsalary
ORDER BY salary DESC;

More Ranking

 empno | depname | salary | row_number | rank | dense_rank
-------+-----------+--------+------------+------+------------
 8 | develop | 6000 | 1 | 1 | 1
 6 | sales | 5500 | 2 | 2 | 2
 10 | develop | 5200 | 3 | 3 | 3
 11 | develop | 5200 | 4 | 3 | 3
 1 | sales | 5000 | 5 | 5 | 4
 3 | sales | 4800 | 6 | 6 | 5
 4 | sales | 4800 | 7 | 6 | 5
 9 | develop | 4500 | 8 | 8 | 6
 7 | develop | 4200 | 9 | 9 | 7
 2 | personnel | 3900 | 10 | 10 | 8
 5 | personnel | 3500 | 11 | 11 | 9
(11 rows)

Built-in Windowing Functions

• row_number()
• rank()
• dense_rank()
• percent_rank()
• cume_dist()
• ntile()

• lag()
• lead()
• first_value()
• last_value()
• nth_value()

row_number()
• Returns number of the current row

val row_number()
5 1
5 2
3 3
1 4

SELECT val, row_number() OVER (ORDER BY val DESC) FROM tbl;

Note: row_number() always incremented values independent of frame

rank()
• Returns rank of the current row with gap

val rank()
5 1
5 1
3 3
1 4

SELECT val, rank() OVER (ORDER BY val DESC) FROM tbl;

Note: rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

gap

dense_rank()
• Returns rank of the current row without gap

val dense_rank()
5 1
5 1
3 2
1 3

SELECT val, dense_rank() OVER (ORDER BY val DESC) FROM tbl;

no gap

Note: dense_rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

percent_rank()

• Returns relative rank; (rank() – 1) / (total row – 1)

val percent_rank()
5 0
5 0
3 0.666666666666667
1 1

SELECT val, percent_rank() OVER (ORDER BY val DESC) FROM tbl;

Note: percent_rank() OVER(*empty*) returns 0 for all rows, since all rows
are peers to each other

values are always between 0 and 1 inclusive.

cume_dist()

• Returns relative rank; (# of preced. or peers) / (total row)

val cume_dist()
5 0.5
5 0.5
3 0.75
1 1

SELECT val, cume_dist() OVER (ORDER BY val DESC) FROM tbl;

Note: cume_dist() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

= 2 / 4

= 2 / 4

= 3 / 4

= 4 / 4

The result can be emulated by
“count(*) OVER (ORDER BY val DESC) / count(*) OVER ()”

ntile()
• Returns dividing bucket number

val ntile(3)
5 1
5 1
3 2
1 3

SELECT val, ntile(3) OVER (ORDER BY val DESC) FROM tbl;

Note: ntile() OVER (*empty*) returns same values as above, since
ntile() doesn’t care the frame but works against the partition

The results are the divided positions, but if there’s remainder add
row from the head

4 % 3 = 1

lag()
• Returns value of row above

val lag(val)
5 NULL
5 5
3 5
1 3

SELECT val, lag(val) OVER (ORDER BY val DESC) FROM tbl;

Note: lag() only acts on a partition.

lead()
• Returns value of the row below

val lead(val)
5 5
5 3
3 1
1 NULL

SELECT val, lead(val) OVER (ORDER BY val DESC) FROM tbl;

Note: lead() acts against a partition.

first_value()
• Returns the first value of the frame

val first_value(val)
5 5
5 5
3 5
1 5

SELECT val, first_value(val) OVER (ORDER BY val DESC) FROM tbl;

last_value()
• Returns the last value of the frame

val last_value(val)
5 1
5 1
3 1
1 1

SELECT val, last_value(val) OVER
 (ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

nth_value()
• Returns the n-th value of the frame

val nth_value(val, val)
5 NULL
5 NULL
3 3
1 5

SELECT val, nth_value(val, val) OVER
 (ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

aggregates(all peers)
• Returns the same values along the frame

val sum(val)
5 14
5 14
3 14
1 14

Note: all rows are the peers to each other

SELECT val, sum(val) OVER () FROM tbl;

cumulative aggregates
• Returns different values along the frame

val sum(val)
5 10
5 10
3 13
1 14

Note: row#1 and row#2 return the same value since they are the peers.
the result of row#3 is sum(val of row#1…#3)

SELECT val, sum(val) OVER (ORDER BY val DESC) FROM tbl;

Generate Points
WITH RECURSIVE x(i)
AS (
 VALUES(0)

UNION ALL
 SELECT i + 1

 FROM x
 WHERE i < 101
),

Generate Points

Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
 SELECT Ix, Iy,
 X::float, Y::float,
 X::float, Y::float,
 0
 FROM

Generate Points

 (SELECT -2.2 + 0.031 * i, i
 FROM x) AS xgen(x,ix)
CROSS JOIN
 (SELECT -1.5 + 0.031 * i, i
 FROM x) AS ygen(y,iy)

Generate Points

UNION ALL

Generate Points
 SELECT
 Ix, Iy, Cx, Cy,
 X * X - Y * Y + Cx AS X,
 Y * X * 2 + Cy,
 I + 1
 FROM Z
 WHERE X * X + Y * Y < 16.0
 AND I < 27
),

Choose Some

Zt (Ix, Iy, I) AS (
 SELECT Ix, Iy, MAX(I) AS I
 FROM Z
 GROUP BY Iy, Ix
 ORDER BY Iy, Ix
)

Display Them

SELECT array_to_string(
 array_agg(
 SUBSTRING(
 ' .,,,-----++++%%%%@@@@#### ',
 GREATEST(I,1)
),''
)
FROM Zt
GROUP BY Iy
ORDER BY Iy;

Travelling Salesman Problem
Given a number of cities and the costs of travelling
from any city to any other city, what is the least-
cost round-trip route that visits each city exactly
once and then returns to the starting city?

TSP Schema

CREATE TABLE pairs (
 from_city TEXT NOT NULL,
 to_city TEXT NOT NULL,
 distance INTEGER NOT NULL,
 PRIMARY KEY(from_city, to_city),
 CHECK (from_city < to_city)
);

TSP Data
INSERT INTO pairs
VALUES
 ('Bari','Bologna',672),
 ('Bari','Bolzano',939),
 ('Bari','Firenze',723),
 ('Bari','Genova',944),
 ('Bari','Milan',881),
 ('Bari','Napoli',257),
 ('Bari','Palermo',708),
 ('Bari','Reggio Calabria',464),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
) /* Working Table */
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)

AS (/* Distances One Way */
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs

UNION ALL /* Distances Other Way */
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Path Initialization Step

paths (
 from_city,
 to_city,
 distance,
 path
)
AS (
 SELECT
 from_city,
 to_city,
 distance,
 ARRAY[from_city] AS "path"
 FROM
 both_ways b1
 WHERE
 b1.from_city = 'Roma'
UNION ALL

TSP Program:
Path Recursion Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6
)
)

TSP Program:
Timely Termination Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6 /* Timely Termination */
)
)

TSP Program:
Filter and Display

SELECT
 path || to_city AS "path",
 distance
FROM
 paths
WHERE
 to_city = 'Roma'
AND
 ARRAY['Milan','Firenze','Napoli'] <@ path
ORDER BY distance, path
LIMIT 1;

TSP Program:
Filter and Display

davidfetter@tsp=# \i travelling_salesman.sql
 path | distance
----------------------------------+----------
 {Roma,Firenze,Milan,Napoli,Roma} | 1553
(1 row)

Time: 11679.503 ms

Who Posts Most?

Who
CREATE TABLE forum_users (
 user_name TEXT NOT NULL,
 CHECK(user_name = trim(user_name)),
 user_id SERIAL UNIQUE
);

CREATE UNIQUE INDEX forum_user_user_name_unique
 ON forum_users(lower(user_name));

INSERT INTO forum_users (user_name)
VALUES
 ('Tom Lane'), ('Robert Haas'), ('Alvaro Herrera'), ('Dave Page'),
 ('Heikki Linnakangas'), ('Magnus Hagander'), ('Gregory Stark'),
 ('Josh Berkus'), ('David Fetter'), ('Benjamin Reed');

Posts

CREATE TABLE message (
 message_id INTEGER PRIMARY KEY,
 parent_id INTEGER
 REFERENCES message(message_id),
 message_text TEXT NOT NULL,
 forum_user_id INTEGER
 NOT NULL REFERENCES forum_users(user_id)
);

Add some posts

INSERT INTO message
WITH RECURSIVE m(
 message_id,
 parent_id,
 message_text,
 forum_user_id)
AS (
 VALUES(1, NULL::integer, md5(random()::text),1)

Add some posts

UNION ALL

Add some posts
 SELECT
 message_id+1,
 CASE
 WHEN random() >= .5 THEN NULL

 ELSE FLOOR(random()*message_id)+1
 END::integer,

 md5(random()::text),
 floor(random() * 10)::integer +1
 FROM m
 WHERE message_id < 1001
)
SELECT * FROM m;

WELL?!?

Patience :)

Find the fr1st ps0t
WITH RECURSIVE t1 AS (
 SELECT
 /* First message in the thread is the thread ID */
 message_id AS thread_id,
 message_id,
 parent_id,
 forum_user_id,
 ARRAY[message_id] AS path
 FROM message
 WHERE parent_id IS NULL

Find the Next Ones

UNION ALL

Find the Next Ones
 SELECT
 t1.thread_id,
 m.message_id,
 m.parent_id,
 m.forum_user_id,
 t1.path || m.message_id
 FROM message m
 JOIN t1 ON
 (t1.message_id = m.parent_id)
),

Count Posters
in Each Thread

t2 AS (
 SELECT
 thread_id,
 forum_user_id,
 count(*) AS reply_count
 FROM t1
 GROUP BY thread_id, forum_user_id
 ORDER BY thread_id, count(*)
),

Find the Top Posters

t3 AS (
 SELECT thread_id,
 max(reply_count) AS reply_count
 FROM t2
 GROUP BY thread_id
)

Show Them :)

SELECT t2.thread_id, f.user_name, t3.reply_count
FROM t2
JOIN t3 USING (thread_id, reply_count)
JOIN forum_users f ON (f.user_id = t2.forum_user_id)
WHERE reply_count > 3
ORDER BY reply_count DESC;

Top Posters :)

 thread_id | user_name | reply_count
-----------+-----------------+-------------
 1 | Tom Lane | 9
 1 | Gregory Stark | 9
 82 | Magnus Hagander | 5
 108 | Dave Page | 4
 9 | Josh Berkus | 4
(5 rows)

OBTW

With CTE and Windowing, SQL is Turing Complete.

Cyclic Tag System

The productions are encoded in the table "p" as follows:
 "iter" is the production number;
 "rnum" is the index of the bit;
 "tag" is the bit value.

This example uses the productions:
 110 01 0000

The initial state is encoded in the non-recursive union arm,
in this case just '1'

The (r.iter % n) subexpression encodes the number of
productions, which can be greater than the size of table "p",
because empty productions are not included in the table.

Cyclic Tag System
Parameters:
 the content of "p"
 the content of the non-recursive branch
 the 3 in (r.iter % 3)

"p" encodes the production rules; the non-recursive branch is
the initial state, and the 3 is the number of rules

The result at each level is a bitstring encoded as 1 bit per
row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits
shifted up one, and if and only if bit 0 was a 1, the content
of the current production rule is appended at the end of the
string.

Proof:

Construct a Cyclic Tag System with
CTEs and Windowing.

Proof:

WITH RECURSIVE
p(iter,rnum,tag) AS (
 VALUES (0,0,1),(0,1,1),(0,2,0),
 (1,0,0),(1,1,1),
 (2,0,0),(2,1,0),(2,2,0),(2,3,0)
),

Proof:
r(iter,rnum,tag) AS (
 VALUES (0,0,1)
UNION ALL
 SELECT r.iter+1,
 CASE
 WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
 ELSE r.rnum-1
 END,
 CASE
 WHEN r.rnum=0 THEN p.tag
 ELSE r.tag
 END
 FROM
 r
 LEFT JOIN p
 ON (r.rnum=0 and r.tag=1 and p.iter=(r.iter % 3))
 WHERE
 r.rnum>0
 OR p.iter IS NOT NULL
)

Proof:

SELECT iter, rnum, tag
FROM r
ORDER BY iter, rnum;

Thanks
Andrew (RhodiumToad) Gierth

Questions?
Comments?
Straitjackets?

Thank You!
Copyright © 2010
David Fetter david.fetter@pgexperts.com
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

