Lists and Recursion and Trees

Oh My!
FOSDEM, Brussels, February 7,2010

Copyright © 2010
David Fetter david.fetter@pgexperts.com PGx

. POSTGRESQL
All Rights Reserved EXPERTS, INC

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

INITECH

T.P.S. REPORT

COVER SHEET

Prepared By:

Device/Program Type:

Product Code Customer

Vendor

Due Date Data L oss

Test Date: ~ Target Run Date:

Program Run Time Reference Guide:

Program L anguage: Number of Error Messages:

Comments:

CONFIDENTIAL

r 1et

randld

E X

E+ + -

oo

rray

werrt + -
W+ - -

-+
-+
LR

iz

F O T IR
-]

rq

R

[T

T
Cc+W W -

o+ ++ -

+ -

[
= &

| -4 N -1

L L

[] - I T
[S A

b
+

*
+
+
r
T
-]

EE

-
e+ W O+ so-omeoas

N T e

+ -

B+ -+ +4+

[T ELTETE X

++
b

+

- -H ++
LYY T

Better, Faster TPS Reports

New!

Reach Outside the Current Row

Better, Faster TPS Reports

* Windowing Function

— Operates on a window
— Returns a value for each row
— Calculates value from the rows in the window

Better, Faster TPS Reports

* YOU can use...

— New window functions

— Existing aggregate functions

— User-defined window functions

— User-defined aggregate functions

Better, Faster TPS Reports

[Aggregates] SELECT key, SUM(val) FROM tbl GROUP BY key;

Better, Faster TPS Reports

[Windowing Functions] SELECT key, SUM(val) OVER (PARTITION BY key) FROM tbl;

ROW_ NUMBER (Before)

SELECT
el.empno,
el .depname,
el.salary,

count(*) AS row number
FROM

empsalary el
JOIN

empsalary e2

ON (el.empno < e2.empno)
GROUP BY el.empno, el.depname, el.salary
ORDER BY el.empno DESC;

ROW_ NUMBER (Before)
OOPS!

depname | salary | row number
——————— -

develop
sales

develop

develop
sales

sales

sales

develop
develop
personnel

5 personnel
(11 rows)

8
6
1
0
1
3
4
9
7
2

ROW_NUMBER (After)

SELECT
empno,
depname,
salary,
row number () OVER (
ORDER BY salary DESC NULLS LAST
)
FROM
empsalary
ORDER BY salary DESC;

ROW_NUMBER (After)

Yippee!

depname row_number

develop
sales
develop
develop
sales
sales
sales
develop
develop
personnel

5 personnel
(11 rows)

8
6
0
1
1
3
4
9
7
2

R O VW 00 JOo Ol s WD K-

=

More Ranking

SELECT
empno,
depname,
salary,
row number () OVER (
ORDER BY salary DESC NULLS LAST
) 1
() OVER (
ORDER BY salary DESC NULLS LAST
) 1
dense rank() OVER (
ORDER BY salary DESC NULLS LAST
)
FROM
empsalary
ORDER BY salary DESC;

More Ranking

depname | salary | row number | dense rank

——————— T T T
develop
sales
develop
develop
sales
sales
sales
develop
develop
personnel

5 personnel
(11 rows)

8
6
0
1
1
3
4
9
7
2

R O W 00O JOo6 O WD K-
R O W OO0 O O W WD K-
O 00 O 01 O b W WDN K

=
=

Built-in Windowing Functions

* row_number() - lag()
* rank() * lead()
* dense_rank() * first_value()

* percent_rank() - last_value()
* cume_dist() * nth_value()
* ntile()

row_number()

* Returns number of the current row

SELECT val, row_number() OVER (ORDER BY val DESC) FROM tbl;
21 row_number()

1

2
3
4

Note: row_number() always incremented values independent of frame

rank()

* Returns rank of the current row with gap

SELECT val, rank() OVER (ORDER BY val DESC) FROM tbl;

1
1
; =
4

Note: rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

dense_rank()

* Returns rank of the current row without gap

SELECT val, dense_rank() OVER (ORDER BY val DESC) FROM tbl;

dense_rank()

1
1
) =
3

Note: dense_rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

percent_rank()

 Returns relative rank; (rank() - 1) / (total row - 1)

SELECT val, percent_rank() OVER (ORDER BY val DESC) FROM tbl;

21 percent_rank()

0
0
0.666666666666667
1

values are always between 0 and 1 inclusive.

Note: percent_rank() OVER(*empty*) returns O for all rows, since all rows
are peers to each other

cume_dist()

* Returns relative rank; (# of preced. or peers) / (total row)

SELECT val, cume_dist() OVER (ORDER BY val DESC) FROM tbl;

va

0.5 =2/4
0.5 =2/4
0.75 =3/4
1 =4 /4

The result can be emulated by
“count(*) OVER (ORDER BY val DESC) / count(*) OVER ()"

Note: cume_dist() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

ntile()

» Returns dividing bucket number

SELECT val, ntile(3) OVER (ORDER BY val DESC) FROM tbl;

val ntile(3)

1 mm) 4 %3 =1
1
2
3

The results are the divided positions, but if there’s remainder add
row from the head

Note: ntile() OVER (*empty*) returns same values as above, since
ntile() doesn’t care the frame but works against the partition

lag()

 Returns value of row above

SELECT val, lag(val) OVER (ORDER BY val DESC) FROM tbl;

val______ lagvah

NULL
5
5
3

Note: lag() only acts on a partition.

lead()

« Returns value of the row below

SELECT val, lead(val) OVER (ORDER BY val DESC) FROM tbl;

val lead(val)

/
)

5

3

—
NULL

)

Note: lead() acts against a partition.

first_value()

 Returns the first value of the frame

SELECT val, first_value(val) OVER (ORDER BY val DESC) FROM tbl;

val first_value(val)

5

5
5
5

last_value()

 Returns the last value of the frame
SELECT val, last_value(val) OVER

(ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

last_value(val)
1
1
1
1 1

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

nth_value()

 Returns the n-th value of the frame

SELECT val, nth_value(val, val) OVER
(ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

val nth_value(val, val)

NULL
NULL
3
5

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

aggregates(all peers)

* Returns the same values along the frame

SELECT val, sum(val) OVER () FROM tbl;

14
14
14
14

Note: all rows are the peers to each other

cumulative aggregates

» Returns different values along the frame

SELECT val, sum(val) OVER (ORDER BY val DESC) FROM tbl;

10
10
13
14

Note: row#1 and row#2 return the same value since they are the peers.
the result of row#3 is sum(val of row#1...#3)

aNala recursion - Google Search

I "_."‘_x_ -~ w W s :
|.\:l | | = LE.'J Lh}if) L\%‘HJ {j’; * -'l http: / /www.google.com.au/search?g=recursion&ie=utf-8&oe=utf-8&aq=t&rls=org. Ly 'H.' % i-"l* recursion

local pg Pg Current PgFoundry PlanetPg Pg PG~ TPM&® CE&L ™ Kosa&H TSC&H

xkcd.com

recursion - Google Search |'I + [

Web Images Videos Maps News Books Gmail more v

Search settings | Si

GOUS[E: recursion

Sdvanced Seanch

Search: (» theweb [pages from Australia

Web (¥ Show options...

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia

Avisual form of recursion known as the Droste effect. The woman in this image is holding an
object which contains a smaller image of her holding the same ...
en.wikipedia.org/wiki/Recursion - Cached - Similar

Recursion (computer science) - Wikipedia, the free encyclopedia
Recursion in computer science is a method where the solution to a problem depends on
solutions to smaller instances of the same problem. ...
en.wikipedia.org/wiki/Recursion_{computer_science) - Cached - Similar

[+ Show maore results from en.wikipedia.org

Recursion -- from Wolfram MathWorld

A recursive process is one in which objects are defined in terms of other objects of the same
type. Using some sort of recurrence relation, the entire class ...

mathworld.wolfram.com » ... » Algorithms » Recursion - Cached - Similar

recursion

Definition of recursion, possibly with links to more information and implementations.
www.itl.nist.gov/divB97/sqg/dads/HTML/recursion.html - Cached - Similar

Did you mean recursion?
23 Jul 2009 ... Bloodwine, on 07/23/2009, -8/+206Y0 Dawg | herd you like recursion so we put
recursion in yo recursion so you can repeat while yvou repeat ...

Results 1 - 10 of about 715,000 for recursion [definition]. (0.08 seconds)

€3 Find: (Q :l [Mext | Previous | (O Highlightall) [] Match case

Cone

(Generate Points

WITH RECURSIVE x(1i)
AS (
VALUES (0)

UNION ALL
SELECT i + 1

FROM X

WHERE i < 101
) r

(Generate Points

z(1x, ly, ¢x, Cy, X, Y, I)
AS (
SELECT Ix, 1y,
Xesfloat, Y::float,
Xesfloat, Y::float,
0

(Generate Points

(SELECT -2.2 + 0.031 * i, i

FROM x) AS xgen(x,1Xx)
CROSS JOIN

(SELECT -1.5 + 0.031 * i, i

FROM x) AS ygen(y,1y)

(Generate Points

UNION ALL

(Generate Points

SELECT
Ix, ly, Cx, Cy,
X * X -Y *Y + Cx AS X,

Y * X * 2 + Cy,

T + 1
FROM Z
WHERE X * X + Y * Y < 16.0
AND I < 27

Choose Some

2zt (Ix, Iy, I) AS (
SELECT Ix, Iy, MAX(I) AS I
FROM 7Z
GROUP BY Iy, IX
ORDER BY Iy, IX

Display Them

ELECT array to string(

array agg(
SUBSTRING (

| |
4

GREAT!]

)

)
FROM Zt

GROUP BY Iy
ORDER BY Iy;

r 1et

randld

E X

E+ + -

oo

rray

werrt + -
W+ - -

-+
-+
LR

iz

F O T IR
-]

rq

R

[T

T
Cc+W W -

o+ ++ -

+ -

[
= &

| -4 N -1

L L

[] - I T
[S A

b
+

*
+
+
r
T
-]

EE

-
e+ W O+ so-omeoas

N T e

+ -

B+ -+ +4+

[T ELTETE X

++
b

+

- -H ++
LYY T

Travelling Salesman Problem

Given a number of cities and the costs of travelling
from any city to any other city, what i1s the least-
cost round-trip route that visits each city exactly
once and then returns to the starting city?

BRUTE-FORCE DYNAMIC |
SOL.UTTON: PROGRAMMING SELUNG ON ERAY:

ALGORITHMS: O(
O (n!) O (n22"))
STILL WORKING
ON YOUR ROUTE?

Q4
~
SHUT THE
HEW VR

TSP Schema

CREATE TABLE pairs (
from city TEXT NOT NULL,
to city TEXT NOT NULL,
distance INTEGER NOT NULL,
PRIMARY KEY(from city, to city),
CHECK (from city < to city)

TSP Data

INSERT INTO pailrs

VALUES
('Bari', 'Bologna’',672),
('Bari', 'Bolzano',939),

('Bari', 'Firenze',723),

('Bari', 'Genova',944),

('Bari', 'Milan',881),

('Bari', 'Napoli',b257),

('Bari', '"Palermo',708),

('Bari', 'Reggio Calabria',464),

TSP Program:

Symmetric Setup

WITH RECURSIVE both ways (
from city,
to city,
distance

) /* Working Table */
AS (
SELECT
from city,
to city,
distance
FROM
pairs
UNION ALL
SELECT
to city AS "from city",
from city AS "to city",
distance
FROM
pairs

TSP Program:

Symmetric Setup

WITH RECURSIVE both ways (
from city,
to city,
distance
)
AS (/* Distances One Way */

SELECT
from city,
to city,
distance
FROM

pairs
UNION ALL

SELECT
to city AS "from city",
from city AS "to city",
distance

FROM
pairs

TSP Program:

Symmetric Setup

WITH RECURSIVE both ways(
from city,
to city,
distance

)
AS (

SELECT
from city,
to city,
distance
FROM
pairs

UNION ALL /* Distances Other Way */
SELECT
to city AS "from city",
from city AS "to _city’,
distance
FROM
pairs

TSP Program:

Path Initialization Step

paths (
from city,
to city,
distance,
path

)
AS (

SELECT

from city,

to city,

distance,

ARRAY[from city] AS "path"
FROM

both ways bl
WHERE

bl.from city = 'Roma’

UNION ALL

TSP Program:

Path Recursion Step

SELECT
b2.from city,
b2.to city,
p.distance + b2.distance,
p.path || b2.from city
FROM
both ways b2
JOIN
paths p
ON (
p.to city = b2.from city
AND
b2.from city <> ALL (p.path]
2:array upper(p.path,1)
]) /* Prevent re-tracing */
AND
array upper(p.path,1l) < 6

TSP Program:

Timely Termination Step

SELECT

b2.from city,

b2.to city,

p.distance + b2.distance,

p.path || b2.from city
FROM

both ways b2
JOIN

paths p

ON (

p.to city = b2.from city

AND
array upper(p.path,l) < 6 /* Timely Termination */

TSP Program:

Filter and Display

SELECT
path || to city AS "path",
distance
FROM
paths
WHERE
to city = 'Roma’
AND
ARRAY['Milan', 'Firenze', 'Napoli'] <@ path
ORDER BY distance, path
LIMIT 1;

TSP Program:

Filter and Display

davidfetter@tsp=# \i travelling salesman.sql

| distance
__________________________________ o

{Roma,Firenze,Milan,Napoli,Roma} |
(1 row)

Time: 11679.503 ms

Who Posts Most!

Who

CREATE TABLE forum users (
user name TEXT NOT NULL,
CHECK(user name = trim(user name)),
user id SERIAL UNIQUE

CREATE UNIQUE INDEX forum user user name unique
ON forum users(lower (user name));

INSERT INTO forum users (user name)

VALUES
('Tom Lane'), ('Robert Haas'), ('Alvaro Herrera'), ('Dave Page'),
('Heikki Linnakangas'), ('Magnus Hagander'), ('Gregory Stark'),
('Josh Berkus'), ('David Fetter'), ('Benjamin Reed');

Posts

CREATE TABLE message (
message 1d INTEGER PRIMARY KEY,
parent 1d INTEGER
REFERENCES message(message 1id),
message text TEXT NOT NULL,
forum user i1d INTEGER
NOT NULL REFERENCES forum users(user 1id)

Add some posts

INSERT INTO message
WITH RECURSIVE m(
message 1d,
parent id,
message text,
forum user 1id)
AS (
VALUES(1, NULL::integer, md5(random()::text),1)

Add some posts

UNION ALL

Add some posts

SELECT
message 1id+1,
CASE
WHEN random() >= .5 THEN NULL

ELSE FLOOR(random() *message id)+1
END: :1integer,

md5 (random() : :text),

floor(random() * 10)::integer +1
FROM m
WHERE message id < 1001

)
SELECT * FROM m;

VVELL?!?

Patience :)

Find the frlst psOt

WITH RECURSIVE tl AS (
SELECT
/* First message in the thread is the thread ID */
message 1d AS thread 1id,
message 1id,

parent id,
forum user 1id,
ARRAY[message 1d] AS path
FROM message
WHERE parent id IS NULL

Find the Next Ones

UNION ALL

Find the Next Ones

ELECT
tl.thread 1id,
m.message 1d,
m.parent 1d,

m.forum user 1d,

tl.path || m.message 1d
FROM message m
JOIN t1 ON

(tl.message 1d = m.parent 1d)

) 1

Count Posters
in Each Thread

t2 AS (
SELECT
thread 1id,

forum user 1id,

count(*) AS reply count
FROM tl
GROUP BY thread id, forum user 1id
ORDER BY thread id, count(*)

) 1

Find the Top Posters

t3 AS (
SELECT thread id,
max(reply count) AS reply count
FROM t2
GROUP BY thread id

)

Show Them :)

SELECT t2.thread id, f.user name, t3.reply count
FROM t2

JOIN t3 USING (thread id, reply count)

JOIN forum users f ON (f.user id = t2.forum user 1id)
WHERE reply count > 3

ORDER BY reply count DESC;

Top Posters :)

thread id | user name | reply count

Tom Lane
Gregory Stark
Magnus Hagander
Dave Page

Josh Berkus

OBTW

With CTE and Windowiling, SQL 1s Turing Complete.

Cyclic Tag System

The productions are encoded in the table "p" as follows:
"iter" 1s the production number;
"rnum" is the index of the bit;
"tag" 1is the bit wvalue.

This example uses the productions:
110 01 0000

The initial state is encoded in the non-recursive union arm,
in this case just '1'

The (r.iter % n) subexpression encodes the number of
productions, which can be greater than the size of table "p",
because empty productions are not included in the table.

Cyclic Tag System

Parameters:

the content of "p"

the content of the non-recursive branch

the 3 in (r.iter % 3)
"p" encodes the production rules; the non-recursive branch 1is
the initial state, and the 3 i1s the number of rules

The result at each level is a bitstring encoded as 1 bit per
row, with rnum as the index of the bit number.

At each iteration, bit 0 1s removed, the remaining bits
shifted up one, and if and only if bit 0 was a 1, the content

of the current production rule is appended at the end of the
string.

Construct a Cyclic Tag System with
CTEs and Windowilng.

Proof:

WITH RECURSIVE
p(iter,rnum,tag) AS (
VALUES (0,0,1),(0,1,1),(0,2,0),
(1,0,0),(1,1,1),
(2IOIO)I(2I1IO)I(212IO)I(2I3IO)

Proof:

r(iter,rnum,tag) AS (
VALUES (0,0,1)
UNION ALL
SELECT r.iter+l,
CASE
WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
ELSE r.rnum-1
END,
CASE
WHEN r.rnum=0 THEN p.tag
ELSE r.tag
END
FROM
r

LEFT JOIN p

ON (r.rnum=0 and r.tag=1l and p.iter=(r.iter % 3))
WHERE

r.rnum>0
OR p.iter IS NOT NULL

SELECT iter, rnum, tag
FROM r
ORDER BY 1iter, rnum;

T hanks

Andrew (RhodiumToad) Gierth

(\o
) o
@i)
O 4
- G
._c.w 0,
o E
o O
ot O

(\o
)
D
0,
L
O
©
R
I
-
©
]
D
P!

Thank You!

Copyright © 2010
David Fetter david.fetter@pgexperts.com PGx

. FPOSTGRESGQL
All nghts Reserved EXPERTS. IMC

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

