
Postgres-XC Architecture, Implementation and Evaluation

Version 0.900

NTT Open Source Software Center
EnterpriseDB Corporation

Mar. 25th, 2010

1

Version 0.900 Mar. 25th, 2010

c©2010, by NTT Open Source Software Center

All rights reserved. Copying and distributing this document are granted only for internal
use, provided this copyright notice remains as is. Prior written consent is needed to modify
this document for distribution.

For information on obtaining permission for use of material from this work, please submit
a written request to Postgres-XC project:

https://sourceforge.net/projects/postgres-xc/

Page 2

Version 0.900 Mar. 25th, 2010

Contents

1 What Is Postgres-XC? 6

2 Postgres-XC’s Goal 6

3 How To Scale Out Both Reads And Writes? 8

3.1 Parallelism In Postgres-XC . 8

3.2 Postgres-XC’s Global Transaction Management 10

4 Postgres-XC Key Components 10

4.1 GTM (Global Transaction Manager) . 10

4.1.1 How PostgreSQL Manages Transactions 10

4.1.2 Making Transaction Management Global 12

4.2 Coordinator . 14

4.3 Data Node . 14

4.4 Interaction Between Key Components . 16

5 Isn’t GTM A Performance Bottleneck? 16

5.1 Primitive GTM Implementation . 18

5.2 GTM Proxy Implementation . 19

5.3 Coordinator And Data Node Connection . 21

6 Performance And Stability 21

6.1 DBT-1-Based Benchmark . 21

6.2 Test Environment . 24

7 Test Result 24

7.1 Throughput And Scalability . 25

7.2 CPU Usage . 27

7.3 Network Workload . 28

Page 3

Version 0.900 Mar. 25th, 2010

8 Remarks Of Current Implementation 29

8.1 Development Status . 29

8.2 Development History & Approach . 29

8.3 Limitations . 30

8.4 Connection Handling . 30

8.5 The Postgres-XC Code . 31

8.6 Noteworthy Changes to Existing PostgreSQL Code 31

9 Roadmap of Postgres-XC 32

Page 4

Version 0.900 Mar. 25th, 2010

Revision Log

Mar. 25, 2010, Version 0.900 Initial release

Page 5

Version 0.900 Mar. 25th, 2010

1 What Is Postgres-XC?

Postgres-XC is an open source project to provide write-scalable, synchronous multi-master,
transparent PostgreSQL cluster solution. It is a collection if tightly coupled database
components which can be installed in more than one hardware or virtual machines.

Write-scalable means Postgres-XC can be configured with as many database servers as
you want and handle much more writes (updating SQL statements) which single database
server can not do. Multi-master means you can have more than one data base servers
which provides single database view. Synchronous means any database update from any
database server is immediately visible to any other transactions running in different masters.
Transparent means you don’t have to worry about how your data is stored in more than
one database servers internally1.

You can configure Postgres-XC to run on multiple hardware. They store your data in a
distributed way, that is, partitioned or replicated way at your choice for each table. 2

When you issue queries, Postgres-XC determines where the target data is stored and issue
corresponding queries to servers with the target data as shown in Figure 1.

In typical web systems, you can have as many web servers or application servers to handle
your transactions. However, you cannot do this for a database server in general because
all the changing data have to be visible to all the transactions. Unlike other database
cluster solution, Postgres-XC provides this capability. You can install as many database
servers as you like. Each database server provides uniform data view to your applications.
Any database update from any server is immediately visible to applications connecting the
database from other servers. This feature is called “synchronous multi master” capability
and this is the most significant feature of Postgres-XC, as illustrated in Figure 1.

Postgres-XC is based upon PostgreSQL database system and reuses most of existing mod-
ules including interface to applications, parser, rewriter and executor. In this way, Postgres-
XC’s application interface is compatible to existing PostgreSQL. (As described later, at
present, we provide limited SQL statement, which will be improved in the future).

2 Postgres-XC’s Goal

Ultimate goal of Postgres-XC is to provide synchronous multi-master PostgreSQL cluster
with read/write scalability. That is, Postgres-XC should provide the following features:

1. Postgres-XC should provide multiple servers to accept transactions and statements
from applications, which is know as “master” server in general. In Postgres-XC, this

1Of course, you should use how tables are stored internally when you design the database physically to
get most from Postgres-XC.

2To distinguish from PostgreSQL’s partitioning, we call this as “distributed”. In distributed database
textbooks, this is often referred to as “horizontal fragment”).

Page 6

Version 0.900 Mar. 25th, 2010

Figure 1: Postgres-XC stores your data in a distributed fashion

is called “coordinator”.

2. Postgres-XC should provide more than one masters.

3. Any “master” should provide consistent database view to applications. Any updates
from any master must be visible in real time manner as if such updates are done in
single PostgreSQL server.

4. Tables should be able to be stored in the database in replicated or distributed way
(know as fragment or partition). Replication and distribution should be transparent
to applications, that is, such replicated and distributed table are seen as single table
and location or number of copies of each record/tuple is managed by Postgres-XC
and is not visible to applications.

5. Postgres-XC provide compatible PostgreSQL API to applications.

6. Postgres-XC’ should provide single and unified view of underlying PostgreSQL database
servers so that SQL statements does not depend on how tables are stored in distributed
way.

So far, Postgres-XC achievements are as follows:

1. Transaction management is almost complete. Postgres-XC provides complete “Read
Committed” and “Serializable” transaction isolation level which behaves exactly the

Page 7

Version 0.900 Mar. 25th, 2010

same as single PostgreSQL server. Savepoint and two-phase commit from the client
should be added in the future.

2. Simple SQL statements are available, which do not need cross-node operation such
as cross-node joins. Details will be described later.

3. Views, subqueries, rules, aggregate functions and and cross-node joins are not avail-
able.

We’re planning to extend the SQL statement support toward general PostgreSQL SQL
statements, including views, subqueries, rules, stored functions and triggers, as well as
supporting dynamic reconfiguration.

3 How To Scale Out Both Reads And Writes?

Simply put, parallelism is the key of the scale. For parallelism, transaction control is the
key technology.

We’ll compare Postgres-XC’s transaction control with conventional replication clusters and
show how Postgres-XC is safe to run update transactions in multiple nodes first, then shows
major Postgres-XC components, and will finally show how to design the database to run
transactions in parallel.

3.1 Parallelism In Postgres-XC

Parallelism is the key to achieve write scalability in Postgres-XC.

Internally, Postgres-XC analyzes incoming SQL statement and chooses which server can
handle it. It is done by a component called “coordinator”. Actual statement processing
is done by a component called “data node”. In typical transactional applications, each
transaction reads/writes small number of tuples and lots of transactions has to be handled.
In this situation, we can design the database so that one or a few data nodes are involved
in handling each statement.

In this way, as seen in Figure 2, statements are handled in parallel by Postgres-XC servers,
which scales transaction throughput. As reported later in this document, with ten servers,
the total throughput could be 6.4 compared with single server PostgreSQL. Please note
that this is accomplished using conventional DBT-1 benchmark, which includes both read
and write operation. Figure-2 shows that present Postgres-XC is suitable for transactional
use case as described in PostgreSQL Wiki page. By improving supported SQL statements,
we’re expecting that Postgres-XC can be suitable for analytic use case.

Page 8

Version 0.900 Mar. 25th, 2010

Figure 2: Postgres-XC can handle statements in parallel in multiple data nodes.

Page 9

Version 0.900 Mar. 25th, 2010

3.2 Postgres-XC’s Global Transaction Management

In replication clusters, you can run read transactions in parallel in multiple standby, or
slave servers. Replication servers provide read scalability. However, you cannot issue write
transactions to standby servers because they don’t have means to propagate changes in
slaves. They cannot maintain consistent view of database to applications for write opera-
tions, unless you issue write transactions to single master server.

Postgres-XC is different.

Postgres-XC is equipped with global transaction management capability which provides
cluster-wide transaction ordering and cluster-wide transaction status to transactions run-
ning on the coordinator (master) and the node which really stores the target data and runs
statements, called data node.

Details of the background and the algorithm will be given in later sections.

4 Postgres-XC Key Components

In this section, we will show main components of Postgres-XC.

Postgres-XC is composed of three major components, called GTM (Global Transaction
Manager), Coordinator and Data Node as shown in Figure 3. Their features are given in
the following sections.

4.1 GTM (Global Transaction Manager)

GTM is a key component of Postgres-XC to provide consistent transaction management
and tuple visibility control. First, we will give how PostgreSQL manages transactions and
updating data.

4.1.1 How PostgreSQL Manages Transactions

In PostgreSQL, each transaction is given unique ID called transaction ID (or XID). XID
is given in ascending order to distinguish which transaction is older/newer3. Please let us
describe a little in detail how it is done. 4

3More precisely, XID is 32bit integer. When XID reaches the max value, it wraps around to the lowest
value (3, as to the latest definition). PostgreSQL has a means to handle this, as well as Postgres-XC. For
simplicity, it will not be described in this document.

4Please note that this description is somewhat simplified for explanation. You will find the precise rule
in tqual.c file in PostgreSQL’s source code.

Page 10

Version 0.900 Mar. 25th, 2010

Figure 3: Interaction between Postgres-XC components

When a transaction tries to read a tuple, each tuple has a set of XIDs to indicate trans-
actions which created and deleted the tuple. So if the target tuple is created by an active
transaction, it is not committed or aborted and the transaction should ignore such tuple.
In such way (in practice, this is done by versup module in PostgreSQL core), if we give
each transaction a unique transaction Id throughout the system and maintain snapshot
what transaction is active, not only in a single server but transaction in all the servers,
we can maintain global consistent visibility of each tuple even when a server accepts new
statement from other transactions running on the other server.

These information is stored in “xmin” and “xmax” fields of each row of table. When we
INSERT rows, XID of inserting transaction is recorded at xmin field. When we update rows
of tables (with UPDATE or DELETE statement), PostgreSQL does not simply overwrite the
old rows. Instead, PostgreSQL “marks” the old rows as “deleted” by writing updating
transaction’s XID to xmax field. In the case of UPDATE (just like INSERT), new rows are
created whose xmin field is “marked” with XIDs of the creating transaction.

These “xmin” and “xmax” are used to determine which row is visible to a transaction. To
do this, PostgreSQL needs a data to indicate what transactions are running, which is called
the “snapshot”.

If the creating transaction is not running, visibility of each row depends upon the fact if the
creating transaction was committed or aborted. Suppose a row of a table which was created

Page 11

Version 0.900 Mar. 25th, 2010

by some transaction and is not deleted yet. If the creating transaction is running, such row
is visible to the transaction which created the row, but not visible to other transactions.
If the creating transaction is not running and was committed the row is visible. If the
transaction was aborted, this row is not visible.

Therefore, PostgreSQL needs two kinds of information to determine “which transaction is
running” and “if an old transaction was committed or aborted.”

The former information is obtained as “snapshot.” PostgreSQL maintains the latter infor-
mation as “CLOG.”

PostgreSQL uses all these information to determine which row is visible to a given trans-
action.

4.1.2 Making Transaction Management Global

In Postgres-XC, we picked the following features of transaction management and visibility
checking:

1. Assigning XID globally to transactions (GXID, Global Transaction ID). This can be
done globally to identify each Transactions in the system.

2. Providing snapshot. GTM collects all the transaction’s status (running, committed,
aborted etc.) to provide snapshot globally (global snapshot). Please note that global
snapshot includes GXID initiated by other server in Figure 1 or Figure 2. This is
needed because some older transaction may visit new server after a while. In this
case, if GXID of such a transaction is not included in the snapshot, this transaction
may be regarded as “old enough” and uncommitted rows may be read. If GXID of
such transaction is included in the snapshot from the beginning, such inconsistency
does not take place.

To do this, Postgres-XC introduced a dedicated component called GTM (Global Transaction
Manager). GTM runs on one of the servers and provide unique and ordered transaction id
to each transaction running on Postgres-XC servers. Because this is globally unique ID, we
call this GXID (Global Transaction Id).

GTM receives GXID request from transactions and provide GXID. It also keep track of
all the transactions when it started and finished to generate snapshot used to control each
tuple visibility. Because snapshot here is also global property, it is called Global Snapshot.

As long as each transaction runs with GXID and Global Snapshot, it can maintain consistent
visibility throughout the system and it is safe to run transactions in parallel in any servers.
On the other hand, a transaction, composed of multiple statements, can be executed using
multiple servers maintaining database consistency. Outline of this mechanism is illustrated
in Figure 4. Please note how transactions included in each snapshot changes according to
global transaction.

Page 12

Version 0.900 Mar. 25th, 2010

Figure 4: Outline of Postgres-XC’s Global Transaction Management.

Page 13

Version 0.900 Mar. 25th, 2010

GTM provides Global Transaction Id to each transaction and keeps track of the status of all
the transactions, whether it is running, committed or aborted, to calculate global snapshot
to maintain tuple visibility.

Please note that each transaction reports when it starts and ends, as well as when it issues
PREPARE command in two-phase commit protocol.

Please also note that global snapshot provided by GTM includes other transactions running
on different servers and reflects transaction status reports.

Each transaction requests snapshot according to the transaction isolation level as done in
PostgreSQL. If the transaction isolation level is “read committed”, then transaction will
request a snapshot for each statement. If it is “serializable”, transaction will request a
snapshot at the beginning of transaction and reuse it thought the transaction.

GTM also provides global value such as sequence. Such global value will include timestamps,
notification and so on. This will be an extension in the following releases.

4.2 Coordinator

Coordinator is an interface to applications. It acts like conventional PostgreSQL backend
process. However, because tables may be replicated or distributed, coordinator does not
store any actual data. Actual data is stored by Data Node as described below. Coordi-
nator receives SQL statements, get Global Transaction Id and Global Snapshot as needed,
determine which data node is involved and ask them to execute (a part of) statement.
When issuing statement to Data Nodes, it is associated with GXID and Global Snapshot
so that Data Node is not confused if it receives another statement from another transaction
originated by another coordinator.

4.3 Data Node

Data Node actually stores your data. Tables may be distributed among data nodes, or
replicated to all the data nodes. Because Data Node does not have global view of the whole
database, it just takes care of locally stored data. Incoming statement is examined by the
coordinator as described next, and rebuilt to execute at each data node involved. It is
then transferred to each data nodes involved together with GXID and Global Snapshot as
needed. Data Node may receive request from various coordinators. However, because each
the transaction is identified uniquely and associated with consistent (global) snapshot, data
node doesn’t have to worry what coordinator each transaction or statement came from.

Overall diagram of transaction control and query processing is shown in Figure.5.

A coordinator receives statements from applications. When it starts new transaction, it
send a request to the GTM to get new global transaction ID. GTM keeps track of such
request to calculate a global snapshot. According to the transaction isolation level, it also

Page 14

Version 0.900 Mar. 25th, 2010

Figure 5: Interaction between Postgres-XC components

Page 15

Version 0.900 Mar. 25th, 2010

requests GTM for the global snapshot. Then the coordinator analyzes a statement and
determines which data not is involved5, rewrite the statement as needed and send it to the
data node involved, with GXID and global snapshot. The involved data node may change
from statement to statement. Detailed sequence will be shown in the next section.

4.4 Interaction Between Key Components

As explained in the previous section, Postgres-XC has three major components to provide
global transaction control, to determine which data node should each statement go and to
handle the statement.

Sequence of interactions among Postgres-XC components are given in Figure 6.

As shown in the figure, when a coordinator begins a new transaction, it inquires GTM for
new transaction ID (GXID, global transaction id). GTM keeps track of such requirement
to calculate global snapshot.

If the transaction isolation mode is SERIALIZABLE, snapshot will be obtained and used
throughout the transaction. When the coordinator accepts a statement from an application
and the isolation mode is READ COMMITTED, snapshot will be obtained from the GTM. Then
the statement is analyzed, determined what data node to go, and converted for each data
node if necessary.

Please note that statements will be passed to appropriate data nodes with GXID and global
snapshot to maintain global transaction Identity and visibility of each rows of tables. Each
result is be collected and calculated into the response to the application.

At the end of the transaction, if multiple data nodes are involved in the update in the
transaction, the coordinator issues PREPARE for 2PC, then issue COMMIT. These steps will
be reported to GTM as well to keeps track of each transaction status to calculate global
snapshots.

Please see the section 4.1 for details of this background.

5 Isn’t GTM A Performance Bottleneck?

Because GTM can be regarded as “serializing” all the transaction processing, people may
think that GTM can be a performance bottleneck.

In fact, GTM can limit the whole scalability. GTM should not be used in very slow network
environment such as wide area network. GTM architecture is intended to be used with
Gigabit local network. For the network workload, please see section 7.3. Latency to send

5At present, the coordinator accepts only statements just one data node is involved. For details, please
see later sections.

Page 16

Version 0.900 Mar. 25th, 2010

Figure 6: Interaction between Postgres-XC components

Page 17

Version 0.900 Mar. 25th, 2010

Figure 7: Primitive GTM structure

each packet may be a problem. We encourage to install Postgres-XC with local Gigabit
network with minimum latency, that is, use as fewer switches involved in the connection
among GTM, coordinator and data nodes. Typical configuration will be shown in Figure 10.

This chapter describes general performance issue of GTM in Postgres-XC along with GTM
internal structure alternatives.

5.1 Primitive GTM Implementation

As seen in Figure 6, GTM can be implemented as shown in Figure 7. Coordinator backend
corresponds to PostgreSQL’s backend process which handles a database connection from
an application and handles each transaction.

The outline of the structure and algorithm are as follows:

1. Coordinator backend is provided with GTM client library to obtain GXID and snap-
shot and to report the transaction status.

2. GTM opens a port to accept connection from each coordinator backend. When GTM
accepts a connection, it creates a thread (GTM Thread) to handle request to GTM
from the connected coordinator backend.

3. GTM Thread receives each request, record it and sends GXID, snapshot and other
response to the coordinator backend.

Page 18

Version 0.900 Mar. 25th, 2010

4. It is repeated until the coordinator backend requests disconnect.

Each of the above interaction is done separately. For example, if the number of coordi-
nator is ten and each coordinator has one hundred connection from applications, which is
quite reasonable in single PostgreSQL in transactional applications, GTM has to have one
thousand of GTM Threads. If each backend issues 25 transaction in a second and each trans-
action includes five statements, then the total number of the interaction between GTM and
ten coordinators to provide global snapshot can be estimated as: 10×100×25×5 = 125, 000.
Because we have one hundred backends in each coordinator, the length of snapshot (GXID
is 32bit integer, as defined in PostgreSQL) will be 4 × 100 × 10 = 4, 000Bytes. Therefore,
GTM has to send about 600Megabytes of data in a second to support this scale. It is quite
larger than Gigabit network can support6. In fact, the order of the amount of data sent
from GTM is (O(N2) where N is number of coordinators.

Not only the amount of data is the issue. The number of interaction is an issue. Very simple
test will show that Gigabit network provides up to 100,000 interactions for each server.

Real network workload will be shown in later section to show the amount of data is not that
large, but it is obvious that we need some means to reduce both interaction and amount of
data.

The next section will explain how to reduce both the number of interaction and amount of
data in GTM.

5.2 GTM Proxy Implementation

You may have been noticed that each transaction is issuing request to GTM so frequently
and we can collect them into single block of requests in each coordinator to reduce the
amount of interaction.

This is the idea of GTM Proxy Implementation as shown in Figure 8,

In this configuration, each coordinator backend does not connect to GTM directly. Instead,
we have GTM Proxy between GTM and coordinator backend to group multiple requests
and responses. GTM Proxy, like GTM explained in Section 5.1, accepts connection from
the coordinator backend. However, it does not create new thread. The following paragraphs
explains how GTM Proxy is initialized and how it handles requests from coordinator back-
ends.

GTM Proxy, as well as GTM, is initialized as follows:

1. GTM starts up just like described in Section 5.1. Now GTM can accept connections
from GTM Proxies.

6In later section, you will see this estimation is too large. However, this can be a bottleneck anyway.

Page 19

Version 0.900 Mar. 25th, 2010

Figure 8: GTM structure with proxy

2. GTM Proxy starts up. GTM Proxy creates GTM Proxy Threads. Each GTM Proxy
Threads connect to the GTM in advance. The number of GTM Proxy Threads can
be specified at the startup. Typical number of threads is one or two so it can save
the number of connections between GTM and Coordinators.

3. GTM Main Thread waits for the request connection from each backend.

When each coordinator backend requests for connection, Proxy Main Thread assigns a GTM
Proxy Thread to handle request. Therefore, one GTM Proxy Thread handles multiple
coordinator backends. If a coordinator has one hundred coordinator backends and one
GTM Proxy Thread, this thread takes care of one hundred coordinator backend.

Then GTM Proxy Thread scans7 all the requests from coordinator backend. If coordinator
is more busy, it is expected to capture more requests in a single scan. Therefore, the proxy
can group many requests into single block of requests, to reduce the number of interaction
between GTM and the coordinator.

Furthermore, in a single scan, we may have multiple request for snapshots. Because these
requests can be regarded as received at the same time, we can represent multiple snapshots
with single one. This will reduce the amount of data which GTM provides.

Test result will be presented later but it is observed that the GTM Proxy is applicable to
twenty coordinators at least in short transactional application such as DBT-1.

It is not simple to estimate the order of interaction and amount of data in GTM Proxy
7Poll(2) will be available, for example.

Page 20

Version 0.900 Mar. 25th, 2010

structure. When the workload to Postgres-XC is quite light, the interaction will be as same
as the case in Section 5.1. On the other hand, when the workload is heavier, the amount of
data is expected to be smaller than O(N2) and the number of interaction will be smaller
than O(N).

5.3 Coordinator And Data Node Connection

As seen in Figure 5, you may think that the number of connection between coordinator
and data node may increase from time to time. This may leave unused connection and
waste system resources. Repeating real connect and disconnect requires data node backend
initialization which increases latency and also wastes system resources.

For example, as in the case of GTM, if each coordinator has one hundred connections to
applications and we have ten coordinators, after a while, each coordinator may have con-
nection to each data node. It means that each coordinator backend has ten connections to
coordinators and each coordinator has one thousand (100×10) connections to coordinators.

Because we consume much more resources for locks and other control information per
backend and only a few of such connection is active at a given time, it is not a good idea
to hold such unused connection between coordinator and data node.

To improve this, Postgres-XC is equipped with connection pooler between coordinator and
data node. When a coordinator backend requires connection to a data node, the pooler
looks for appropriate connection from the pool. If there’s an available one, the pooler assigns
it to the coordinator backend. When the connection is no longer needed, the coordinator
backend returns the connection to the pooler. Pooler does not disconnect the connection.
It keeps the connection to the pool for later reuse, keeping data node backend running.

6 Performance And Stability

6.1 DBT-1-Based Benchmark

DBT-1 benchmark is used as a basis of performance and stability evaluation.

We chose DBT-1 benchmark for the test because

• It is a typical benchmark available in public for transactional use case.

• Tables are designed so that it cannot simply be partitioned. We need more than one
partitioning.

At present, Postgres-XC does not support cross-node joins 8 and aggregate functions. It
does not support views, rules or subqueries either. It is not allowed to update the key value

8Cross node joins are joins which needs material from more than one data node to calculate.

Page 21

Version 0.900 Mar. 25th, 2010

used to determine the location of rows of tables. Although it is possible to use semantic
dependency among keys to determine smarter table distribution, it is not available yet and
we should do this manually910.

We will show how we modified DBT-1 to best tune to Postgres-XC.

To localize statement target, we modified DBT-1 tables as follows11.

1. Customer-ID is added to order-line table. Because Customer ID is the external key
of order table to customer table and order ID is the external key of order line table
to order table, it is obvious that order line table refers to the customer table through
order ID. We expect this addition can be generated automatically be adding key
dependence description in DDL.

2. Customer-ID is added to address table because in reality it is obvious that personal
information belongs to each customer and it is common practice not to share such
information among different customers.

3. table is divided into two tables, item and stock, as in the latest TPC-W specification.

Also, we changed connection from ODBC to libpq.

Table configuration of DBT-1, is illustrated in Figure 9 with modification in Postgres-XC
evaluation. Tables with blue frame are distributed using customer ID, green with shopping
cart ID and red with item ID. Tables with black frame are replicated over the data nodes.

Please note shopping cart and shopping cart ID tables. It is more favorable if shopping
cart and shopping card ID can be distributed using customer ID. However, because DBT-1
uses these table even before a customer is not assigned customer ID, they are distributed
using shopping cart ID.

We also found that current DBT-1 is not suitable for long-period test. DBT-1 does not
maintain order and order line tables. From time to time, number of outstanding order
increases while some of the transaction displays all such orders. Number of displayed order
could be thousands and could reduce the throughput as we measure it for a long period as
one week.

To improve this, we modified the code to limit the number of displayed order. (All these
modification is available as a part of Postgres-XCrelease material).

9Present Postgres-XC is focused on features which can demonstrate outcome of Postgres-XC in most
effective way and these remarks in database design should be noticed in the future extension as well.

10Current implementation remarks will be summarized in later sections.
11For details of DBT-1 table configuration, please refer to DBT-1 material.

Page 22

Version 0.900 Mar. 25th, 2010

Figure 9: DBT-1 Based Tables Used in the Evaluation.

Page 23

Version 0.900 Mar. 25th, 2010

Figure 10: Postgres-XC Test Environment

6.2 Test Environment

Test environment is shown in Figure 10. We have one GTM, and up to ten database servers.
Each database server is equipped with one coordinator and one data node. Although we can
install coordinator and data node in separate servers, we used this configuration because it
is simpler to balance the workload of coordinator and data node.

We have four servers to generate DBT-1 workloads.

Each servers are equipped with two NICs (1Gbps each). GTM and some of coordinator
are equipped with Infiniband connection to be used when Gigabit network is not sufficient.
(As shown later, Infiniband is not necessary in our case).

7 Test Result

This section describes the benchmark test using DBT-1 based benchmark program and
environment described in previous sections.

We ran the benchmark program in the following configuration.

1. Vanilla PostgreSQL, for reference.

2. Postgres-XC with one server.

Page 24

Version 0.900 Mar. 25th, 2010

Table 1: Summary of measurement (Full load)
Database Num.of Servers Throughput (TPS) Scale Factor

PostgreSQL 1 2,500 1.0
Postgres-XC 1 1,900 0.72
Postgres-XC 2 3,630 1.45
Postgres-XC 3 5,568 2.3
Postgres-XC 5 8,500 3.4
Postgres-XC 10 16,000 6.4

3. Postgres-XC with two servers.

4. Postgres-XC with three servers.

5. Postgres-XC with five servers.

6. Postgres-XC with ten servers.

One coordinator and data node were installed in each server. GTM was installed in a
separate server.

We ran the test with two kinds of workload as follows:

1. Full load. Measured throughput and resource usage with full workload, which is the
maximum throughput available.

2. 90% load. Arranged workload to get 90% throughput of the full load.

The following sections will explain the throughput, scale factor, resource usage and network
workload of the benchmark.

7.1 Throughput And Scalability

This subsection describes the measurement result of throughput and scale factor.

Table 1 shows the result of full load throughput for various configurations. Figure 11 is the
chart of Postgres-XC scale factor vs. number of servers, based on the result in Table 1.

From these table and figure, scale factor is quite reasonable, considering that each state-
ments parsed and analyzed twice, by coordinator and data node.

We also run Postgres-XC with five coordinators/data nodes for a week with 90% workload
of the full load with five coordinator/data nodes. In this period, GTM, coordinators and

Page 25

Version 0.900 Mar. 25th, 2010

Figure 11: Postgres-XC Full Load Throughput

Page 26

Version 0.900 Mar. 25th, 2010

Figure 12: Postgres-XC Full Load Throughput in One Week Test

Table 2: Postgres-XC CPU Usage
Configuration GTM CO/DN∗(Av.) Loader(Av.)
PostgreSQL∗∗ N/A 99.2% 5.6%

Postgres-XC(1,2)∗∗∗ 1.9% 91.5% 5.1%
Postgres-XC(2,2)∗∗∗ 3.9& 95.6% 11.7%
Postgres-XC(3,2)∗∗∗ 6.5% 96.4% 19.3%
Postgres-XC(5,2)∗∗∗ 14.3% 96.4% 38.0%
Postgres-XC(10,4)∗∗∗ 42.2% 95.7% 34.4%

∗ Coordinator/Data Node
∗∗ 2 loaders were used.

∗∗∗ Indicates number of Coordinator/Data Node and loader respectively.

data nodes handled GXID wraparound and vacuum freeze successfully12.

Figure 12 shows the throughput chart. At average, the throughput is quite stable, except
that spikes are observed periodically and spike grows with time.

We observed that vacuum analyze is running for a long period at the spike. We’re analyzing
this and trying to find workarounds. We think GTM has nothing to do with the spike and
GTM runs stably in long period.

7.2 CPU Usage

We’ve measured CPU usage in the benchmark test above to see if Postgres-XC reasonably
uses hardware resource. Table 2 shows CPU usage (100% − idle) for various configuration
and nodes with full workload.

12Because GXID, as well as TransactionID in PostgreSQL, is defined as 32bit unsigned integer, it reaches
the maximum value some time (in this case, on 6th or 7th day) and GXID value has to return to the initial
valid value. Until then, all the tuples marked with the first half value of GXID has to be frozen to special
XID value defined as FrozenTransactionId

Page 27

Version 0.900 Mar. 25th, 2010

Figure 13: Network Data Transfer Rate of Each Server

7.3 Network Workload

We have also measured the network workload.

Figure 13 summarizes the data transfer rate between server. Please note the measurement
in this figure is network read/write rate for each servers.

This is also summarized in Table 3.

This measurement indicates the following:

1. GTM Proxy drastically reduces the amount of data transfer between GTM and co-
ordinator. Considering the network transfer rate about 100GB/s (Gigabit network),
GTM can take care of at least twenty coordinators at full load.

2. Other server’s network workload is very light. Conventional Gigabit network is suffi-
cient.

Because current Postgres-XC doesn’t support cross node join, no cross-node tuple transfer
is involved in this measurement. In the future, we should make similar measurement for
cross-node joins to estimate additional network workload.

Page 28

Version 0.900 Mar. 25th, 2010

Table 3: Postgres-XC Network Workload

Server Read(simple) Read(proxy) Write(simple) Write(proxy)
GTM ⇔ Coordinator 3.3MB/s 1.7MB/s 59.3MB/s 28.6MB/s
Loader ⇔ Coordinator 14.0MB/s 16.8MB/s 2.5MB/s 2.6MB/s
Coordinator/Data Node ⇔
Loader/GTM

7.0MB/s 3.8MB/s 6.8MB/s 8.6MB/s

Coordinator/Data Node ⇔
Coordinator/Data Node

4.8MB/s 5.1MB/s 4.8MB/s 4.8MB/s

8 Remarks Of Current Implementation

This section contains information regarding the status of the project and some general
information regarding development of PG-XC.

8.1 Development Status

Postgres-XC is in the early stages of development, but has produced useful results for
demonstrating scalability. The SQL commands currently supported is limited, but in the
coming months we will work on expanding on that. The focus will be on increasing the
usability and features of the cluster.

8.2 Development History & Approach

A goal at the beginning of the project was write scalability for transactions. User-created
tables may be distributed across multiple nodes (or replicated), to spread the load. In
accessing these tables, we needed to guarantee that the data across nodes can be accessed
with a consistent view of the data.

Therefore a decision was made to focus on transaction management initially. If we could
not achieve good performance in globally supporting MVCC13, the project could not get
very far.

We first developed a Global Transaction Manager (GTM) that is responsible for assigning
transaction ids and snapshots. This worked well for hundreds of connections, but for
greater scalability, we also developed a GTM Proxy. Basically, it collects GTM requests
from coordinator processes and groups them together more efficiently. Network messaging
is improved, the GTM need not handle as many connections, and time spent in critical
sections in the GTM is reduced.

13MVCC (Multi-Version Concurrency Control) is a center of PostgreSQL’s transaction management. For
details, please refer to PostgreSQL reference manual.

Page 29

Version 0.900 Mar. 25th, 2010

We modified the other components of the cluster to make use of the new GTM. Clients
connect to a coordinator. The coordinator communicates with GTM for transaction id
and snapshot information, and the coordinator passes it down as needed to the data node
connections.

All of this adds some latency for any given transaction, but we are interested in achieving
good total throughput for the entire cluster handling many sessions.

As of this writing in March 2010, we will be improving the supported SQL and PostgreSQL
features. We currently block some statements that we determine to be unsafe to execute
in the cluster or are not supported, like creating a foreign key constraint that cannot
be enforced locally on a single node. In the near term we may loosen restrictions on some
features to improve usability, but the DBA needs to understand the danger and be cognizant
of how tables are distributed (example: stored functions).

8.3 Limitations

We only execute SQL statements that can be safely executed in the current cluster. For
example, we exclude SELECT statements where data from node must be joined with data
on another. We also do not yet support multi-node aggregates or multi-node DISTINCT.

8.4 Connection Handling

We want to avoid unnecessarily involving data nodes in a transaction that do not need to
be involved. That is, we do not simply obtain a connection to every data node for every
client session connected to a coordinator. The connections are managed via a connection
pooler process.

For example, assume we have two tables each distributed across 10 nodes via a hash on one
of their respective columns. If we have a two statement transaction (each an UPDATE) where
the WHERE clause of each UPDATE contains the hash column being compared to a literal, for
each of those statements we can determine the single node to execute on. When each of
those statements is executed, we only send it down to the data node involved.

Assume in our example, only 2 data nodes were involved, one for the first UPDATE statement,
and one for the second UPDATE. This frees up more connections that can remain available
in the pool. In addition, at commit time, we commit on only those nodes involved.

Again using this example, we implicitly commit the transaction in a two-phase commit
transaction since more than one data node is involved. Note that if both of the UPDATEs
went to the same data node, at commit time we detect this and do not bother using two
phase commit, using a simple commit instead.

Page 30

Version 0.900 Mar. 25th, 2010

8.5 The Postgres-XC Code

This section discusses the Postgres-XC code. Details about compiling and installing Postgres-
XC can be found in PostgreSQL reference manual.

The current Postgres-XC code is applied to PostgreSQL 8.4.2. To make it easier to view
the changes, most of the changes to existing PostgreSQL modules are easily identifiable by
blocks of code that use “#ifdef PGX”. (The original idea was to try and make the code
easy to remerge with PostgreSQL as its development continues and have the changes easy
to identify.) As a result, before executing “configure” when building the code, please set
CFLAGS=-DPGXC.

Note that the same PostgreSQL executable is used for both the coordinator and data node
components. They are just started differently. You will typically see some code comments
indicating whether the particular block of code was added for the coordinator side or data
node side. Having these components use the same source modules makes development and
maintenance easier.

8.6 Noteworthy Changes to Existing PostgreSQL Code

GTM, transaction handling, and related changes can be found in code relating to transaction
ids and snapshots (varsup.c, xact.c, procarray.c, postgres.c). Sequences live on and
are assigned from the GTM, like transaction ids and snapshots. In contrast to stand-
alone PostgreSQL, in Postgres-XC, every node will not necessarily be involved in every
transaction. Some existing logic in clog.c had to therefore be modified to detect if we need
to extend clog. Similar code appears in subtrans.c.

We also added special handling for transaction id wrap-around. There is a new pg catalog
table, pgxc class that stores table distribution information. We considered modifying
pg class, but decided to try and keep the existing catalog tables as-is and create new ones
instead, thinking this may make remerging code with future versions of PostgreSQL easier.
We will likely update the structure of the table and possibly break this out into multiple
tables, but it is sufficient for now.

There is special handling for auto-vacuum. We want to exclude those transaction ids
from other snapshots, so we notify GTM specially when requesting a transaction id for
auto-vacuum. The data nodes typically receive transaction ids and snapshots from the
coordinator. Auto-vacuum worker threads, however, connect directly to GTM.

A possible future optimization is to have autovacuum worker threads that are performing
an analyze have their transaction ids appear only in snapshots of statements executing on
the same node (we need not worry about that transaction id appearing on other nodes).

We avoid writing to WAL on the coordinator if it was not involved in a transaction. If
it is involved, such as for DDL, we do write to WAL. At initdb time, we just use local
transaction ids and do not involve GTM.

Page 31

Version 0.900 Mar. 25th, 2010

9 Roadmap of Postgres-XC

Because current Postgres-XC supports fundamental transaction management, tuple visi-
bility, connection pooling infrastructure and the outcome is very reasonable, future effort
should be payed to coordinator extension and utilities.

Coordinator extension with higher priority includes the following:

Backup and Restore We will begin with COPY TO feature and then, pg dump and
pg restore. We will extend pg restore to allow inputs from multiple coordinators.

Then, we will implement physical backup and restore using base backup and archive log.
As you may notice, we cannot simply do this because we need another means to synchronize
the recovery point among data nodes and coordinators. We have already done preliminary
research how GTM can help to synchronize recovery point. This will be disclosed elsewhere.

Statement Extension First of all, we’d like to extend supported statements by analyzing
them more precisely. We may use PostgreSQL’s planner code14.

Then we’ll begin to support cross-node join. Cross-node join is very complicated feature,
especially global planning/optimizing is the key. We’re planning to begin with basic exe-
cution with general tuple transfer among data nodes and coordinators.

Although most of the statements can be executed at data nodes, most general execution is
to collect every material to the coordinator (this could be very slow, though). Efficient tuple
transfer is common infrastructure both for cross-node join and cross-node aggregation.

In addition, more logs should be available to keep track how each statement was handled
within the coordinator.

Prepared Statement This is especially useful at batch processing.

Stored functions As you may imagine, we need three kinds of stored function, (1) one
runs only on coordinators, (2) one runs only on data nodes and (3) one can run both on
coordinator and data node.

When defining functions, you may have to specify where it can run and the coordinator uses
this information when it rewrites input statement for each data node, as well as additional
plan inside the coordinator.

14So far, Postgres-XC use PostgreSQL’s parser and rewriter, but not planner.

Page 32

Version 0.900 Mar. 25th, 2010

DDLs Many DDLs can be handled simply by forwarding them to all the coordinator and
data nodes. CREATE TYPE is a typical example. We ill make these DDLs safe to run in
Postgres-XC.

Other complicated DDLs, such as CREATE VIEW or CREATE RULE will be implemented af-
terwords. We need preliminary research and design work for the Rule.

Order By and Distinct They’re one of the most popular clause. We’re planning to
implement them with highest priority.

Aggregate Functions Handling aggregate functions is rather complicated and we’re
planning to support this in several steps. First, we will support simple usage which appears
at the top level of SELECT clause without GROUP BY clause. Then we will support GROUP
BY clause, as well as aggregates in expression. User-defined aggregate function will be the
next issue.

Session Parameter Current implementation does not manage session parameters. Man-
aging session parameters in the connection pooling will be addressed in the near future.

Tuple Transfer Infrastructure For more general support of cross-node join and aggre-
gates (and ORDER BY possibly), a data node needs tuples stored in other data node. De-
pending upon the plan, a coordinator may have to collect all such information to execute
query at the coordinator. For this purpose, we’re planning to do research and investigation
work. Issues are (1) how to collect tuples at remote data nodes using the context of current
transaction, (2) avoid writing to WAL and (3) use existing PostgreSQL module as much as
possible.

Implementation will be done afterwords.

Savepoint GTM needs an extension for this. Implementation is straightforward and is
an issue of resource assigning.

External 2PC This is to allow applications to issue 2PC command as statements (Postgres-
XC is already using 2PC command internally to commit transactions involved by multiple
data node). It is also straightforward.

More Global Values Most typical example is timestamp. This is an extension to GTM
to provide such value. It is similar to SEQUENCE.

Page 33

Version 0.900 Mar. 25th, 2010

Drivers Some of the major PostgreSQL drivers will be tested. This has high priority.
Candidates are JDBC, ODBC and PHP. Because Postgres-XC does not have proprietary
interface to applications, this work will involve to check if statements which uses there
drivers implicitly work well.

Cursor We’re planning to support cursor in four steps. First, we will support forward
cursor without ORDER BY, then forward cursor with ORDER BY. Third, we will do some
architectural and design work to support backward cursor before implementation.

The second step may need releasing old record lock because we may need to move from
data node to data node.

Batch Support If multiple statement is included in single input, separated by ’;’, it
improves the performance if we don’t wait for the response of each statement but keep
forwarding the rest of statements. In Postgres-XC, successive statements may be assigned to
different data node and such asynchronous response handling may bring great performance
gain.

It is rather straightforward and will be addressed according to real requirements.

Primary Node To update replicated table safely, it is important to update table at a
fixed data node first then update one on other data nodes. It has the most highest priority
and will be done promptly.

Catalog Synchronization Similar to replicated tables, it is also desirable if any DDL
can be issued from any coordinator at any time, without causing conflict.

For this purpose, we can use Primary Node idea here too. We may need some architectural
and design work for some of DDLs, for example, ALTER TABLE before implementation.

Triggers Trigger is a complicated issue. If trigger is fired at a data node and the action
is closed in such a data node, there will be almost nothing to worry. However, we should
support the case a trigger action has to run on the coordinator. We also need delayed
action at the end of transaction.

Constraints The most difficult constraint to enforce in distributed table is “UNIQUE.”
To enforce this strictly, we may need some global index. Similar difficulty is involved in
reference integrity.

We may have to ease up this to several levels to avoid check overhead among the nodes.

Page 34

Version 0.900 Mar. 25th, 2010

Tuple Relocation We may need to allow to update distribution column values. It may
need tuple transfer from data node to data node. This case is a bit different from tuple
transfer infrastructure because the target data is not for work. It is persistent data.

Performance Spike You may have seen we have some performance spike in long period
test result. So far, we’re thinking that it is caused by vacuum analyze which tend to run
longer as we run Postgres-XC longer. The cause will be identified and fixed.

Pool for coordinator This will be useful when we synchronize DDL among coordinators
as well.

[End of Document]

Page 35

