
 Pgxc_fdw Implementation Plan
 July, 2025
 Koichi Suzuki

 1. Introduction
 Postgres-XC has been developed and released in 2010, by NTT Open Source (OSSC) to provide a scale-out
 solution of PostgreSQL database cluster.

 Outline of this product was presented in PGCon 2010 and 2012. First presentation information is in this
 PostgreSQL wiki . Presentation audio is available here . Postgre-XC features and details were presented in a
 PGCon tutorial in 2012. Presentation material is available here .

 At first, Postgres-XC (PGXC hereafter) was based on PostgreSQL 9.2 and was a spinoff of PostgreSQL, meaning
 that PGXC is a source code level modification of PostgreSQL.

 Achievement of PGXC is as follows:

 ● Provide global consistent visibility for global distributed transactions, avoiding read anomaly caused by
 different timing of commit/abort.

 ● Good scale-out for short transactions.

 Drawbacks of PGXC are:

 ● Source code modification of PostgreSQL: PGXC source needs to migrate to PostgreSQL source code
 upgrade to accommodate major PostgreSQL upgrades.

 ● Global transaction management was done in a centralized manner. It fits to datacenter level distribution but
 does not to geo-distributed use case.

 These drawbacks made maintenance and enhancement of PGXC very challenging. This is the main reason why
 PGXC development could not continue for a long time.

 Now PostgreSQL provides much more infrastructures such as FDW and parallel execution, which PGXC cannot
 provide (PGXL, spinoff of PGXC, provide parallel query capability).

 2. Key PGXC concepts to achieve good scalability
 PGXC allow two types of tables:

 2.1 Partitioned table
 Partitioned tables are known as “shards” in distributed databases. A single table, called parent table, is divided into
 multiple partitions to accommodate different rows, based on the constraints defined on each partition. Such
 partitions can be placed in different databases so that some of the operations on the parent table can be pushed
 down to the database accommodating the partition and some of them can be executed in parallel, in different
 databases.

 This works to achieve global scalability.

 1

https://www.pgcon.org/2010/schedule/events/226.en.html
https://www.pgcon.org/2010/schedule/events/226.en.html
https://www.pgcon.org/2010/audio/30%20Postgres-XC,%20Write-scalable,%20sync.mp3
https://www.pgcon.org/2012/schedule/attachments/224_Postgres-XC_tutorial.pdf

 2.2 Replicated table
 Replicated table is a table whose copy is accommodated in each remote (and local, possibly) database. This type
 of table is introduced to increase a change of pushdown of database operation, mainly join.

 If we have only partitioned tables, we can push down join operation only when the join key is the partitioning key of
 both partitions.

 Replicated table increases the chance of join pushdown. We can select tables to be replicated which appear many
 times in join operation with various join keys and which do not have relatively very frequent writes.

 With a replicated table, any join between a partitioned table and a replicated table can be pushed down. This
 significantly enhances the chance of join pushdown and is very essential for pgxc to achieve good scalability.

 2.3 Writes to the replicated table
 If we allow arbitrary write operations to each replica of a replicated table, data in this table becomes inconsistent
 very easily even though each writing transaction tries to write consistent data to each replica.

 We need a solution to make writes to such replicated tables consistent even when multiple conflicting writes are
 initiated by different transactions.

 PGXC resolved this by introducing a “preferred” node. Preferred node is a database where writes to a replicated
 table should go first. Writes to other nodes can be done in the same transaction in arbitrary order or in parallel,
 after the first write to the preferred node is successful.

 This protocol is very simple and provides serializable writes to replicated tables successfully. With this protocol,
 non-conflicting writes can be done in parallel.

 3. Component of PGXC
 PGXC consists of the following components.

 3.1 Query processor
 Query processor is a modified query planner and executor to handle distributed operations among partitioned tables
 and replicated tables.

 3.2 Connection pooler

 This provides connection pooling to remote databases (server, in fdw) to save overheads to initiate remote sessions.

 3.3 Global deadlock detector

 In pgxc_fdw, because many transactions are involved with writes to remote databases, there is some risk that such
 transactions suffer from global deadlock. We may need to implement a deadlock detector for such transactions.

 3.4 Global transaction manager (GTM)
 This provides consistent transaction management over all the databases in the cluster. This includes providing
 consistent visibility of the database writes, avoiding read anomaly in distributed transactions.

 4. Implementation priority

 2

 It is not necessary to implement all the components as shown in the last chapter. First priority is the query
 processor. This is the central component of the pgxc_fdw feature. As described later, the latest PostgreSQL
 infrastructure enables the implementation of pgxc_fdw as FDW driver, with some extensions.

 Next priority is connection pooler. This is another key component to provide good performance fundamentals for
 pgxc_fdw distributed transactions. It is apparent that we can implement this as another PostgreSQL extension.

 The third priority will be the global deadlock detector. With current PostgreSQL infrastructure, we need to modify
 the base PostgreSQL code for this capability, especially inside the deadlock.c source module among others.

 Last priority will be global transaction manager. Global transaction manager is useful to avoid read anomalies in
 read transactions. We should note that we can provide write consistency with 2PC protocol and the impact of such
 read anomalies can be minor. To implement GTM, we need some extension to the current PostgreSQL, as shown
 later.

 5. Query processor basics/design and implementation
 In this chapter, we will present the basic ideas/design and implementation of the query processor, including
 partitioned tables and replicated tables. Schematic idea about DDL and ideas about fdw callback functions will also
 given here.

 5.1 General idea
 The general idea is to implement “server” as a group of databases. For example, when we have four databases,
 DB1, DB2, DB3 and DB4 for pgxc_fdw database cluster, we can create a server, namely, pgxc_server to represent
 a group of databases, db1 to db4. Then, using OPTIONS property of the table, we can specify if the table is
 replicated or partitioned and which server they actually located, including the local name of these tables.

 Please note that even a local tables can be included in this group. In this case, such individual server can be
 marked as “local”. In this case, current session will be used to issue partial statement as called from core FDW
 infrastructure. In this case, such “local” replica/partition is handed as FDW resource and pgxc_fdw handles this
 locally.

 To avoid table name duplication, FDW table names need to be different from the actual local table name. We can
 handle remote tables in the same manner so that we can use the same DDL as much as possible in different local
 databases, for example, in db1 to db4 as above.

 5.2 Partitioned table
 Parent tables are defined as local tables and remote tables are added as their partitions. In each remote table
 definition, the server should be the same and in OPTIONS property, actual location and local table name are given
 so that the pgxc_fdw driver can handle access to them properly.

 5.3 Replicated table
 A replicated table is defined as a single table in CREATE FOREIGN TABLE. In OPTIONS property, we specify the
 set of actual remote tables. Each remote table is defined using another DDL.

 5.4 Schematic DDLs
 This section gives a general idea how pgxc_fdw resources can be defined. Please note that example statements
 just illustrates general idea and are not intended to be the final syntax/semantics.

 In the following subsections, we assume the following:

 ● Foreign data wrapper name: pgxc_fdw
 ● Name of representative server: cluster1
 ● Names of individual servers: db1, db2, db3, db4

 3

 ● Individual server for the local host: db1
 Please note that we need to run similar DDL in db2, db3 and db4 if we need to run pgxc_fdw queries at
 these servers.

 ● User of pgxc_fdw: foo
 ● Partitioned table name: table_a
 ● FDW name of each partition of table_a: rtab_a_part1, rtab_a_part2, rtab_a_part3,

 rtab_a_part4
 Each located at db1 to db4 respectively.

 ● Actual name of each partition: table_a_part1, table_a_part2, table_a_part3,
 table_a_part4
 Each for rtab_a_part x respectively.

 ● FDW name of a replicated table: table_b
 ● FDW name of each replica of table_b: rtab_b_db1, rtab_b_db2, rtab_b_db3, rtab_b_db4

 Each located at db1 to db4 respectively.
 ● Actual name of each replica: rtab_b

 5.4.1 Servers and user mappings

 As described above, a server in pgxc_fdw can be a group of actual servers. From PG core, such a representative
 server is regarded as a “single” server so that pgxc_fdw can produce its own plan and run it.

 The following is a schematic DDL to define representative and actual servers in pgxc_fdw.

 Please note that we can combine different versions of postgres, or even different databases for partition and replica.

 /* Individual Servers */

 /* Please note that host1 is local server and db1 server is marked as local */

 CREATE SERVER db1 TYPE 'postgres' VERSION '17'
 FOREIGN DATA WRAPPER pgxc_fdw
 OPTIONS (host 'host1', user 'foo', port '5432', local ‘true’);

 CREATE SERVER db2 TYPE 'postgres' VERSION '17'
 FOREIGN DATA WRAPPER pgxc_fdw
 OPTIONS (host 'host2', user 'foo', port '5432', local ‘false’);

 CREATE SERVER db3 TYPE 'postgres' VERSION '17'
 FOREIGN DATA WRAPPER pgxc_fdw
 OPTIONS (host 'host3', user 'foo', port '5432', local ‘false’);

 CREATE SERVER db4 TYPE 'postgres' VERSION '17'
 FOREIGN DATA WRAPPER pgxc_fdw
 OPTIONS (host 'host4', user 'foo', port '5432', local ‘false’);

 /* Representative Server */

 CREATE SERVER cluster1 TYPE 'group'
 FOREIGN DATA WRAPPER pgxc_fdw
 OPTIONS(servers 'db1 db2 db3 db4',

 /* Pooler can be optional (separate implementation and extension) */
 pooler 'cluster1_pooler', /* pooler name */
 pool_init '1', /* pooler configuratin */
 pool_max '10',
 pool_limit '15',
 session_string 'SET; SET ...;');

 4

 /* User Mapping */

 CREATE USER MAPPING FOR USER foo
 SERVER db1;

 CREATE USER MAPPING FOR USER foo
 SERVER db2;

 CREATE USER MAPPING FOR USER foo
 SERVER db3;

 CREATE USER MAPPING FOR USER foo
 SERVER host4;

 CREATE USER MAPPING FOR USER foo
 SERVER db4;

 5.4.2 Partitioned Table

 /* Parent table */

 CREATE TABLE tableA
 (column)
 PARTITIONED BY ...;

 /* Each partition */

 CREATE FOREIGN TABLE rtab_a_part1
 (columns ...)
 PARTITION OF TableA (... partitioning details ...)
 SERVER cluster1
 OPTIONS (server 'host1', partition 'true', server 'db1', real_name 'table_a_part1');

 CREATE FOREIGN TABLE rtab_a_part2
 (columns ...)
 PARTITION OF TableA (... partitioning details ...)
 SERVER cluster1
 OPTIONS (server 'host2', partition 'true', server 'db2', real_name 'table_a_part2');

 CREATE FOREIGN TABLE rtab_a_part3
 (columns ...)
 PARTITION OF TableA (... partitioning details ...)
 SERVER cluster1
 OPTIONS (server 'host3', partition 'true', server 'db3', real_name 'table_a_part3');

 CREATE FOREIGN TABLE rtab_a_part4
 (columns ...)
 PARTITION OF TableA (... partitioning details ...)
 SERVER cluster1
 OPTIONS (server 'host4', partition 'true', server 'db4', real_name 'table_a_part4');

 5.4.3 Replicated Table

 /* Each Replica */

 CREATE FOREIGN TABLE rtab_b_db1
 (column)
 SERVER db1

 5

 OPTIONS (repl 'true', is_parent 'false', real_name 'rtab_b');

 CREATE FOREIGN TABLE rtab_b_db2
 (column)
 SERVER db2
 OPTIONS (repl 'true', is_parent 'false', real_name 'rtab_b');

 CREATE FOREIGN TABLE rtab_b_db3
 (column)
 SERVER db3
 OPTIONS (repl 'true', is_parent 'false', real_name 'rtab_b');

 CREATE FOREIGN TABLE rtab_b_db4
 (column)
 SERVER db4
 OPTIONS (repl 'true', is_parent 'false', real_name 'rtab_b');

 /* Parent Table */
 /* If we define this at different server too, we need to configure same preferred property */

 CREATE FOREIGN TABLE tabB
 (column ...)
 SERVER cluster1
 OPTIONS(repl 'true',

 is_parent 'true',
 elements 'rtab_b_db1 rtab_b_db2 rtab_b_db3 rtab_b_db4'
 preferred 'rtab_b_db1');

 5.5 General Remarks
 ● With the above definition, all the partitions and (virtually single) replicated tables are regarded to be in the

 server cluster1 .
 ● Cluster1 is actually a group of servers. Pgxc_fdw understands this and it can tell the core about

 join/aggregate pushdown and other operations, where to go.
 ● Also pgxc_fdw can manage writes to the replicated table, to write to all the nodes, considering the preferred

 node as well.
 ● In the callback functions, we should handle the server as representative one and use actual server to return

 the requested information and to do actual operation.
 ● We may be able to (and should) have dedicated catalog for pgxc_fdw for performance and maintenance.

 We need to implement a validator for this, to check OPTIONS properties and maintain pgsc_fdw catalog
 table.

 6. Connection pooler
 Connection pooler can be implemented as a separate extension. Connection pooler provides various functions for
 pgxc_fdw to initialize/attach/release/finalize connection. As given in 5.4.1, connection pooler can belong to a
 representative server. Multiple representative servers can share a connection pooler if session parameters and
 other connection properties are shared among them.

 Connection pooler is database specific (not a global object) and is identified by its name. It can have the following
 properties but the list is not comprehensive.

 ● pooler name,
 ● representative server to use this pooler,
 ● initial number of connections per non-representative server,
 ● max number of connections per non-representative server,

 6

 ● limit number of connections per non-representative server. If connection is needed beyond max number,
 pooler can create more connections for temporary use, Once this is released, then the pooler will terminate
 the connection to save system resource.

 Please note that connection pooler on one database can have more than one connection pooler, identified by its
 name. Assignment of the pooler to the representative server can be done in CREATE SERVER.

 Connection pooler should provide functions, among others:

 ● Attach a connection to a given (non-prepresentative) server,
 ● Detach a connection.
 ● Start and stop pooler.

 7. Global transaction manager
 As stated in many external materials, two-phase commit protocol is the basic infrastructure to provide transaction
 write consistency for distributed transactions. However, because of the difference of the timestamp of
 commit/abort of each transaction, we have a chance that visibility of such transaction results is different from
 database to database, which is called read anomalies.

 We need a separate infrastructure to avoid such read anomalies. Various different kinds of algorithms are
 proposed for this and pgxc_fdw can choose one of such algorithms. In PGXC/PGXL, we modified the database
 core source and this is not a good idea, considering the ease of code merge and getting along with PostgreSQL
 upgrades.

 Here’s some idea to allow external/individual global transaction managers as PostgreSQL extensions.

 ● Have a new hook so that we can replace TransactionIdGetStatus() function in transam.c source
 module. This function returns the status of given XID. To avoid read anomalies, we need to look into the
 consistent status of a given distributed transaction. The backend is that even though the local transaction
 has been committed/aborted, other pieces of transactions consisting of the global transaction might be
 running. In this case, we need to return the status as running .

 ● New event trigger for each transaction statement: commit/abort/prepare transaction/savepoint/release
 savepoint/rollback savepoint.

 ○ These event triggers can be replaced with corresponding hooks.

 8. Global deadlock detector
 Global deadlock detector has already been implemented and is available in the git hub as a folk from PostgreSQL
 14. We need to port this to the latest version of the PostgreSQL and (hopefully) make this a part of the core code.

 Presentation material is available here .

 [End of the document]

 7

https://github.com/koichi-szk/postgres
https://wiki.postgresql.org/images/2/23/Global_Deadlock_Detection_in_Distributed_PostgreSQL_Environment.pdf

