

Serializable Snapshot Isolation
Heikki Linnakangas / EnterpriseDB

Serializable in PostgreSQL

BEGIN ISOLATION LEVEL SERIALIZABLE;

● In <\= 9.0, what you actually got was Snapshot
Isolation

● In 9.1, you get the real thing!

SQL-92 Isolation levels

BEGIN ISOLATION LEVEL

● READ UNCOMMITTED
● READ COMMITTED
● REPEATABLE READ
● SERIALIZABLE

;

● Serializable means: results equivalent to some
serial ordering of the transactions

PostgreSQL Isolation levels, in 9.0
and earlier

● READ COMMITTED
● Snapshot Isolation

● Snapshot Isolation level falls somewhere
between ANSI Repeatable Read and
Serializable.

Read Committed

create table t (id int not null primary key);
insert into t select generate_series(1, 10);

 delete from t where id = (select min(id) from
t);

Q: How many rows are deleted by the delete
statement if there are 10 rows in the table?

Read Committed

create table t (id int not null primary key);
insert into t select generate_series(1, 10);

begin;
BEGIN
update t set id = id – 1;
UPDATE 10

delete from t where id = (select min(id) from
t);
DELETE 0

commit;
COMMIT

A: It depends.

Snapshot Isolation (pre-9.1)

● At the beginning of transaction, the system
takes a snapshot of the database

● All queries in the transaction return results from
that snapshot
● Any later changes are not visible

● On conflict, the transaction is aborted:

delete from t where id = (select min(id) from t);
ERROR: could not serialize access due to
concurrent update

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = x
}

COMMIT

Goal:
 ensure at least one
 guard always on-duty

guard on-duty?on-duty?

Alice y

Bob y

9Saturday, May 21, 2011

guard on-duty?on-duty?

Alice y

Bob y

BEGIN

SELECT count(*)
FROM guard
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guards = ʻBobʼ
}
COMMIT

BEGIN

SELECT count(*)
FROM guards
WHERE on-duty = y
 [result = 2]

if > 1 {
 UPDATE guards
 SET on-duty = n
 WHERE guard = ʻAliceʼ
}
COMMIT

n

n

10Saturday, May 21, 2011

DIY referential integrity

● CREATE TRIGGER BEFORE INSERT ON
childtable ...

IF NOT EXISTS (
SELECT 1 FROM parent WHERE id =

NEW.parentid) THEN
RAISE ERROR 'parent not found'

● Not safe without real Serializability!

How do I know if my application is
affected?

● Carefully inspect every transaction in the
application
● Difficult.
● Not feasible in large applications

● Bugs arising from insufficient isolation are
difficult to debug

Summary this far

● Isolation Levels:
● Read Committed
● Snapshot Isolation

– Still not good enough

● Serializable Snapshot Isolation

SSI to the rescue!

In 9.1, SERIALIZABLE gives you
Serializable Snapshot Isolation
● Based on Snapshot Isolation
● Detects the cases where Snapshot Isolation

goes wrong, and aborts

SSI Approach (Almost.)
Actually build the dependency graph!

• If a cycle is created,
abort some transaction to break it

T2

T1 T3

22Saturday, May 21, 2011

SSI behavior

● Conservative
● Transactions are sometimes aborted unnecessarily

● Prefers to abort ”pivot” transaction, so that
when the aborted transaction is retried, you
make progress

● Introduces predicate locking
● Also locks ”gaps” between rows

SSI Predicate locks

SELECT * FROM mytable
WHERE id BETWEEN 5 AND 10;

● Locks not only the matched rows, but
the range where any matches might've
been

● Detects later INSERTs that match the
WHERE-clause

● Lock granularity: index page or whole
table

3
55
77
99

11
13

SSI Predicate locks

BEGIN ISOLATION LEVEL SERIALIZABLE;

SELECT * FROM mytable WHERE id = 10;

SELECT mode, locktype, relation::regclass, page, tuple
FROM pg_locks WHERE mode = 'SIReadLock';

 mode | locktype | relation | page | tuple

++++

 SIReadLockSIReadLock | tuple | mytable | 0 | 10

 SIReadLockSIReadLock | page | mytable_pkey | 1 |

(2 rows)

Performance

● SSI has overhead
● Predicate locking
● Detecting conflict
● Increased number of rollbacks due to conflicts

Performance

” The only real answer is "it depends". At various times I ran different
benchmarks where the overhead ranged from "lost in the noise" to about ranged from "lost in the noise" to about
5% for one variety of "worst case"5% for one variety of "worst case". Dan ran DBT-2, following the
instructions on how to measure performance quite rigorously, and came up
with a 2% hit versus repeatable read for that workload2% hit versus repeatable read for that workload. I rarely found a
benchmark where the hit exceeded 2%, but I have a report of a workload I have a report of a workload
where they hit was 20%where they hit was 20% -- for constantly overlapping long-running
transactions contending for the same table.

– Kevin Grittner on pgsql-hackers mailing list (Mon, 10 Oct 2011)

Performance

However, we seem to have a problem with scaling to many CPUs:

” I ran my good old pgbench -S, scale factor 100, shared_buffers \= 8GB test on Nate
Boley's box.

… Serializable mode is much slower on this test, though. On REL9_1_STABLE, it's about it's about
8% slower with a single client8% slower with a single client. At 8 clients, the difference rises to 43%, and at 32 clients, it's
51% slower. On 9.2devel, raw performance is somewhat higher (e.g. +51% at 8 clients) but
the performance when not using SSI has improved so much that the performance gap
between serializable and the other two isolation levels is now huge: with 32 clients, in
serializable mode, the median result was 21114.577645 tps; in read committed,
218748.929692 tps - that is, read committed is running more than ten times faster than read committed is running more than ten times faster than
serializableserializable.

– Robert Haas on pgsql-hackers mailing list (Tue, 11 Oct 2011)

● Hopefully that will be improved in 9.2 ...

Isolation Levels
SQL Standard

SERIALIZABLE

REPEATABLE
 READ

READ
COMMITTED

READ
UNCOMMITTED

9.0

snapshot
isolation

per-statement
snapshots

9.0

snapshot
isolation

per-statement
snapshots

9.1

SSI

snapshot
isolation

per-statement
snapshots

6Saturday, May 21, 2011

Writing applications under SSI

● You can ignore concurrency issues
● No need for SELECT FOR UPDATE/SHARE, let

alone LOCK TABLE

● Be prepared to retry aborted transactions
● Declare read-only transactions as such

● BEGIN READ ONLY;

● Avoid long-running transactions

Thank you!

● Michael J. Cahill et al
● For inventing SSI

● Kevin Grittner and Dan Ports
● For implementing SSI in PostgreSQL

Feedback:

http://2011.pgconf.eu/feedback

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

