k. Pa,perlessm
Post

How PostgreSQL 9 Makes Web
Architecture Sweeter

Jonathan S. Katz
Vice President, Technology
http://www.paperlesspost.com

Introduction

* No secret: PostgreSQL 9 has some very
powerful new features

* How do they extend to web applications?

Overview

* Review new features and how they relate to
web apps

e Series of case studies of PostgreSQL 9
optimizations

* Overview of Sphinx vs. tsearch2 + tying into
PostgreSQL 9 + web

PostgreSQL 9: The List

* http://wiki.postgresql.org/wiki/
What's new in PostgreSQL 9.0

Highlights

JOIN removal

— Play more nicely with ORMs
* (ORMs + PostgreSQL — separate discussion)

S NOT NULL + indexes

DEFERRABLE UNIQUE CONSTRAINTS
Hstore improvements: “no limits”
LISTEN / NOTIFY message passing

Caveats

* Access to new features depends on
PostgreSQL adapter

— ActiveRecord does not support hstore
— Nonblocking access to LISTEN / NOTIFY

More Highlights?

* Native Streaming Replication / Hot Standby

* Wow.

Real World: Paperless Post

* Provides stationery designed via web
interface, delivered via email

My Account

"fp g:f: rless Cards My Post Box

I5:gtss 10606

All | Invitations Holiday Note Cards Seasonal Save The Dates Cards = Announcements Designers

Paperless Post lets you send fine stationery via email

Holiday

Invitations {
Jonathan Katz

o
250 POND STREET
HAVERFORD, PENNSYLVANIA

Complex Technology Stack

Web Servers + Load Balancing
— nginx, haproxy, thin (Ruby app server)

Background Workers

— Message queues
— Scheduled jobs

Caching (memcache, redis)

PosigreSQl

Major Considerations

e High traffic (especially the holidays)
— Response time
— High availability
* Developer tools + PostgreSQL playing nicely

— “transparent changes” in developer environment

* How does streaming replication / hot standby
help?

Backups / Failover

e Relatively easy to setup
— Optimal to have some DBA knowledge

 Could read the official docs or

http://wiki.postgresql.org/wiki/
Streaming_Replication

11

Multiple Standbys

* Can “horizontally scale” your Postgres
Instances

 Read-Only scale out

— esp. if reads account for a lot of work

: db-mastero1 SSL —L> db-slave03
|
|
|
|
|
db-slave01 ‘ db-slave0? \
w

12

Case: Business Intelligence

e "Can you find out how many customers are
using blue envelopes over the past week and
cross reference it against our sales from last
year at this time?”

— “For a report going out today"

Solutions

* 8.4

— Make a SQL dump of tables/database and run query
locally
* time consuming

— Run the query on the production server
* Bad user experience, i.e. slow site

* 9.0

— run the query on a hot standby instance!

— (Web) application for standby node tailored for
business intelligence

14

Case: Caching

« 84

— Run a query, cache it’s results (memcache, etc.)

e 9.0
— Can warm up a cache using data from hot standby

15

Example

1
web-app INSERT/UPDATE db-master01
2 3
4

queue / worker ——— SELECT db-slave01

5

l memcache |

16

Case: Changing Master Servers

e (without Slony or other tools)

* 84

— Turn site off, dump data, transfer data, load data,
site on

* 9.0

— New servers acts as hot standby

— Turn site off, wait for standby to finish catching up,
switch, turn site on

17

Case: Redirect Read-Only Queries

* Use hot standbys for read only queries
— Maintenance situations

— Offload work

 (Just cache?)

e Caveat emptor: performance may vary

18

Case: Full Text Search

PostgreSQL full text search: tsearch2
Uses GIN or GiST indexes
GIN

— Faster to search over, slower to update
GIST
— Slower to search over, faster to update

(Can’t have our strudel and eat it)

19

Our Path Deviates Slightly

* Will talk about Sphinx search engine
e ...and we will get back to PostgreSQL 9
e ..and the web

20

Sphinx: High Performance Indexing +
Search

e Writtenin C

e Supports PostgreSQL and some other open
source RDBMS

* Makes full text search...fast. Really fast.

21

Back to the Strudel Problem

* Sphinx 0.9 forces you to do a complete reindex
when updating search set

— No problem if data is small or not updated
frequently

— But...
* Highly dynamic data set
* Lots of write once, read-only data
e (Sphinx 1.10: incremental indexing! Stay
tuned...)

So: Sphinx or tsearch2?

Depends on the use-case

Tools available

— Ruby has “ThinkingSphinx” library for Ruby <~
Sphinx access

Sphinx is “yet another service”

Write-once, read many times
— tsearch2 + GIN and Sphinx both do this well, so...

Benchmark Battle!

* depesz did a very interesting, elaborate
benchmarking

* Source: http://www.depesz.com/index.php/
2010/10/17/why-im-not-fan-of-tsearch-2/

e Next few slides use some content from above
source

24

The Machine

CPU: Dual core, 2.93GHz Intel Core2Duo
E7500

Memory: 4GB

Storage: Seagate Barracuda LP — SATA (3Gb/s)
— 1718

Ran against PostgreSQL 8.4.4
— (I would expect similar results with 9)

25

The Setup

e Used DB of ~“19M records
* Broke up into smaller tables for comparison

* Broke up tests by word saturation in text (e.g.
30%, 20%, 5%)

26

Setting up the tsearch?2 indexes

table index type size size/records time time/records
pages_1000 gist 204,800 B 204 B 0.8s 0.8 ms
pages_1000 gin 2,867,200 B 2,867 B 1.0s 1.0 ms
pages_10000 gist 2,105,344 B 210 B 48s 0.5 ms
pages_10000 gin 12,795,904 B 1,279 B 5.5s 0.6 ms
pages_100000 gist 27,885,568 B 278 B 729 s 0.7 ms
pages_100000 gin 127,565,824 B 1,275 B 82.4 s 0.8 ms
pages_1000000 gist 220,954,624 B 220 B 659.5 s 0.7 ms
pages_1000000 gin 1,057,144,832 B 1,057 B 8229 s 0.8 ms
pages_10000000 gist 2,236,841,984 B 223 B| 9,168.4 s 0.9 ms
pages_10000000 gin 10,583,187,456 B 1,058 B 8.9 ms

27

Order by timestamp, first 20 records; time in milliseconds

tsearch2 and Searching

table index ~ 30% ~ 20% ~ 10% ~ 5% ~ 1% ~ 0.5%
type word word word word word word

pages_1000 gist 612.8 649.5 538.1 509.2 442.4 408.1
pages_1000 gin 3.1 3.1 2.9 2.8 2.7 2.7
pages_10000 gist 3,163.5 2,288.3 2,395.3 2,457.8 1,885.3 2,747.1
pages_10000 gin 8.3 7.5 4.9 5.0 3.3 3.2
pages_100000 gist 48,619.5 44,112.9 46,061.2 41,082.9 44,503.1 30,890.6
pages_100000 gin 38.8 32.2 24.0 14.5 7.0 5.2
pages_1000000 gist 385,316.4 380,671.1 421,210.0 | 355,074.1| 276,791.6 245,679.6
pages_1000000 gin 316.2 257.5 192.8 127.7 40.8 26.2
pages_10000000 | gist
pages_10000000| gin 280.3 263.4

28

My Interpretation

* GIiST gets pwned

* GIN works well, but...

— Explodes on large table, minus searches for sparse
keywords

29

Setting up the Sphinx Indexes

data set size | size/records time time/records
pages_1000 1.7 MB 1657 B 0.203 s 0.203 ms
pages_10000 8.1 MB 840 B 1.119s 0.112 ms
pages_100000 |100 MB 1040 B 15.330 s 0.153 ms
pages_1000000 | 1.1 GB 1099 B| 189.044 s 0.189 ms
pages_10000000| 13 GB 1354 B | 2580.042 s 0.258 ms

30

Sphinx and search

Order by timestamp, first 20 records; time in milliseconds

table ~ 30% word | ~ 20% word | ~ 10% word | ~ 5% word | ~ 1% word | ~ 0.5% word
pages_1000 0.003 0.003 0.004 0.003 0.003 0.003
pages_10000 0.008 0.005 0.005 0.006 0.005 0.006
pages_100000 0.026 0.025 0.027 0.022 0.026 0.023
pages_1000000 0.110 0.110 0.109 0.108 0.108 0.109

pages_10000000 1.139 1.140 1.147 1.140 1.140 1.145

31

A Table Says 1,000 words
(30% of them)

Comparison for 10 million rows, time in seconds

index type | ~ 30% word | ~ 20% word | ~ 10% word | ~ 5% word | ~ 1% word | ~ 0.5% word

gist 6238.225 5392.750 5700.967 4404.192 4153.318 4926.797
gin 99.566 88.180 77.109 68.868 0.303 0.286
sphinx 1.141 1.139 1.140 1.139 1.136 1.142

*But in sphinx 0.9, there is a time penalty on
index creation

32

Which Should | Use?

* Up to you —you know your data best
— Benchmark!

— Infrastructure setup
* Access to adding new services

— What tools are available in your programming
language?

33

Why are we discussing this?

e (Other than to fill time)

* | actually had a similar problem:
— one table has 10 million rows
— a related table has about 7.5 million
— both frequently updated
— both need to be full text searchable

34

With PostgreSQL 8.4...

* Could only run Sphinx indexer against master
database

— Some ideas do not need to be attempted

35

With PostgreSQL 9.0...

)

db-master01

—l
‘ indexer » db-slaved? |

e would keep architecture same for Sphinx 1.10

36

Other Notes

* Sphinx libraries
— http://sphinxsearch.com/community/plugins/

37

So...

* PostgreSQL 9 is awesome — spread the word
— pg_upgrade makes upgrade from 8.4 really easy
— only issues we’ve had have been self-inflicted

e Scaling your web infrastructure requires you
to understand
— your data
— application usage
— the complexities of communication

Thank You

Thank You grazie GRACIAS oBRrRIGADO Tack

> z
5 December 7th, 2010 >
= 7
7
: 4
2 Thank you for attending! o
o =
5 Questions? =
c B
" Contact Info: .
<
z. jonathan.katz@excoventures.com =
> >
% O
- &

JOD] ©0AQVOI¥E80 SVYIDVYD @1zZ2p1bB

Ill/lr' 7![’)1//-

39

