Recovering From A Damaged PostgreSQL Cluster
Recovering From A Damaged PostgreSQL Cluster

@ me
Recovering From A Damaged PostgreSQL Cluster

Asurion Mobile Applications
http://www.asurion.com/

Robert Bernier
Sr. Database Administrator, Asurion Mobile Applications
robert.bernier@asurion.com
1400 Fashion Island Blvd, San Mateo, CA 94404
Recovering From A Damaged PostgreSQL Cluster

Just a little bit of knowledge
Recovering From A Damaged PostgreSQL Cluster

The secret is...
Recovering From A Damaged PostgreSQL Cluster

Indexes & Tables are FILES!
Recovering From A Damaged PostgreSQL Cluster
Recovering From A Damaged PostgreSQL Cluster
An Example, ver 9.2.4

create table t1 (id serial primary key, x real);
insert into t1 (x) select random() from generate_series(1,1000);

\dtis+

List of relations

<table>
<thead>
<tr>
<th>Schema</th>
<th>Name</th>
<th>Type</th>
<th>Owner</th>
<th>Table</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>t1</td>
<td>table</td>
<td>postgres</td>
<td></td>
<td>40 kB</td>
<td></td>
</tr>
<tr>
<td>public</td>
<td>t1_id_seq</td>
<td>sequence</td>
<td>postgres</td>
<td></td>
<td>8192 bytes</td>
<td></td>
</tr>
<tr>
<td>public</td>
<td>t1_pkey</td>
<td>index</td>
<td>postgres</td>
<td>t1</td>
<td>40 kB</td>
<td></td>
</tr>
</tbody>
</table>

select relname, relfilenode, relpages, relpages*1024*8 bytes
from pg_class where relname in ('t1','t1_id_seq','t1_pkey');

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>24628</td>
<td>5</td>
<td>40960</td>
</tr>
<tr>
<td>t1_id_seq</td>
<td>24626</td>
<td>1</td>
<td>8192</td>
</tr>
<tr>
<td>t1_pkey</td>
<td>24632</td>
<td>5</td>
<td>40960</td>
</tr>
</tbody>
</table>

cd ~/data
ls -l $(find ./ | grep 24628) -> -rw------ 1 rbernier rbernier 40960 2011-03-07 11:53 ./base/11564/24628
 -rw------ 1 rbernier rbernier 24576 2011-03-07 11:53 ./base/11564/24628_fsm
ls -l $(find ./ | grep 24626) -> -rw------ 1 rbernier rbernier 8192 2011-03-07 11:53 ./base/11564/24626
ls -l $(find ./ | grep 24632) -> -rw------ 1 rbernier rbernier 40960 2011-03-07 11:53 ./base/11564/24632
Recovering From A Damaged PostgreSQL Cluster

Damaged files cannot be processed

-- damage the sequence; can't insert records
rm ./base/11564/24626
touch ./base/11564/24626

insert into t1(x) values(9990);
ERROR: could not read block 0 of relation base/11564/24626: read only 0 of 8192 bytes

\ds t1_id_seq

<table>
<thead>
<tr>
<th>List of relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema</td>
</tr>
<tr>
<td>--------+------</td>
</tr>
<tr>
<td>public</td>
</tr>
</tbody>
</table>

table t1_id_seq;

<table>
<thead>
<tr>
<th>sequence_name</th>
<th>last_value</th>
<th>start_value</th>
<th>increment_by</th>
<th>max_value</th>
<th>min_value</th>
<th>cache_value</th>
<th>log_cnt</th>
<th>is_cycled</th>
<th>is_called</th>
</tr>
</thead>
</table>
Recovering From A Damaged PostgreSQL Cluster

Damaged files cannot be processed

```sql
-- damage the index; can't perform a query
rm ./base/11564/24632
touch ./base/11564/24632

explain select * from t1 where id=100;

QUERY PLAN

Index Scan using t1_pkey on t1 (cost=0.00..8.27 rows=1 width=8)
  Index Cond: (id = 100)

postgres=# select * from t1 where id=100;
ERROR:  could not read block 0 of relation base/11564/24632: read only 0 of 8192 bytes
```
Recovering From A Damaged PostgreSQL Cluster

Damaged files cannot be processed

-- damage the table, can't perform any query
select * from t1;
ERROR: invalid page header in block 0 of relation base/11564/24628
Recovering From A Damaged PostgreSQL Cluster

Example Invocation

Scenario: Cannot INSERT Due to Damaged Sequence
Solution: DROP and CREATE SEQUENCE

```sql
drop sequence t1_id_seq cascade;
create sequence t1_id_seq start with 10001 owned by t1.id;
alter table only t1 alter column id set default nextval('t1_id_seq'::regclass);
select pg_catalog.setval('t1_id_seq', 10002, false);
```

BEFORE

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1_id_seq</td>
<td>24626</td>
<td>1</td>
<td>8192</td>
</tr>
</tbody>
</table>

AFTER

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1_id_seq</td>
<td>189575</td>
<td>1</td>
<td>8192</td>
</tr>
</tbody>
</table>
Recovering From A Damaged PostgreSQL Cluster

Example Invocation

Scenario: Rebuild Data Cluster with Corrupted Index
Solution: Rebuild index

```
reindex index t1_pkey;
```

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1_pkey</td>
<td>24632</td>
<td>5</td>
<td>40960</td>
</tr>
</tbody>
</table>

BEFORE

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1_pkey</td>
<td>24632</td>
<td>5</td>
<td>40960</td>
</tr>
</tbody>
</table>

AFTER

<table>
<thead>
<tr>
<th>relname</th>
<th>relfilenode</th>
<th>relpages</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1_pkey</td>
<td>189578</td>
<td>5</td>
<td>40960</td>
</tr>
</tbody>
</table>
Recovering From A Damaged PostgreSQL Cluster

Example Invocation

Scenario: Rebuild Data Cluster with Corrupted System Indexes
Solution: Rebuild indexes under single-user mode

- start up the damaged cluster and reindex with the following invocation
 postgres --single postgres -D ~/data <<_eof_
 reindex system mydatabase
 eof
Recovering From A Damaged PostgreSQL Cluster

About Single User Mode

- Used during bootstrapping by initdb
- Can be used for debugging
- Can be used for disaster recovery
 i.e. System indexes can be manipulated
- Can enter queries and the results are printed to the screen
Recovering From A Damaged PostgreSQL Cluster

About Single User Mode

```bash
postgres --single postgres -D ~/data temp
```

PostgreSQL stand-alone backend 9.2.3

```
backend> select * from t1 limit 5
1: id (typeid = 23, len = 4, typmod = -1, byval = t)
  2: x (typeid = 700, len = 4, typmod = -1, byval = t)

    1: id = "1" (typeid = 23, len = 4, typmod = -1, byval = t)
    2: x = "0.767757" (typeid = 700, len = 4, typmod = -1, byval = t)

    1: id = "2" (typeid = 23, len = 4, typmod = -1, byval = t)
    2: x = "0.253584" (typeid = 700, len = 4, typmod = -1, byval = t)

    1: id = "3" (typeid = 23, len = 4, typmod = -1, byval = t)
    2: x = "0.0912474" (typeid = 700, len = 4, typmod = -1, byval = t)

    1: id = "4" (typeid = 23, len = 4, typmod = -1, byval = t)
    2: x = "0.45276" (typeid = 700, len = 4, typmod = -1, byval = t)

    1: id = "5" (typeid = 23, len = 4, typmod = -1, byval = t)
    2: x = "0.784381" (typeid = 700, len = 4, typmod = -1, byval = t)

backend>
```
Recovering From A Damaged PostgreSQL Cluster

Example Invocation

Scenario: PostgreSQL Starts Up But Queries To User-Defined Tables Fails
Solution: Generate a data-dump into a newly created data cluster

- start up the damaged cluster with the following invocation

  ```
  pg_ctl -D ~/data -o '-c zero_damaged_pages=true' -l logfile.txt start
  ```

- execute standard data dump with `pg_dumpall`
Recovering From A Damaged PostgreSQL Cluster

Example Invocation

Scenario: Rebuild And Reuse An Existing Data Cluster With Corrupted User-Defined Tables
Solution: Rebuild Cluster

- start up the damaged cluster with the following invocation
 `pg_ctl -D ~/data -o '-c zero_damaged_pages=true' -l logfile.txt start`

- login the database and execute the following SQL statement
 `VACUUM FULL ANALYZE;`
 `REINDEX DATABASE mydatabase;`

- restart the newly repaired cluster
 `pg_ctl -D ~/data -l logfile.txt -m smart restart`
Recovering From A Damaged PostgreSQL Cluster

Caveats

- DROP and CREATE damaged indexes
- Where possible, recreate the cluster on another machine... don't take a chance
- Executing a dump should be the first action i.e. don't VACUUM damaged tables as you can actually lose data before you reuse/backup/dump
- Damaged system catalogs must be recovered in single user mode
- Tables larger 1GB+ are split
- TOASTED tables add an entirely new level of complexity
Recovering From A Damaged PostgreSQL Cluster

One last word

Hacking the cluster...
Recovering From A Damaged PostgreSQL Cluster

References

- http://linux.die.net/man/1/find
- http://linux.die.net/man/1/killall
Recovering From A Damaged PostgreSQL Cluster

Asurion Mobile Applications
http://www.asurion.com/

Robert Bernier
Sr. Database Administrator, Asurion Mobile Applications
robert.bernier@asurion.com
1400 Fashion Island Blvd, San Mateo, CA 94404