
Database Tools by Skype
Asko Oja

Stored Procedure API
 Skype has had from the beginning the requirement that all database access must be

implemented through stored procedures.
 Using function-based database access has more general good points:

 It's good to have SQL statements that operate on data near to tables. That
makes life of DBA's easier.

 It makes it possible to optimize and reorganize tables transparently to the
application.

 Enables DBA's to move parts of database into another database without
changing application interface.

 Easier to manage security if you don't have to do it on table level. In most cases
you need to control what user can do and on which data not on what tables.

 All transactions can be made in autocommit mode. That means absolutely
minimal amount of roundtrips (1) for each query and also each transaction
takes shortest possible amount of time on server - remember that various locks
that transactions acquire are release on COMMIT.

Keeping Online Databases Slim and Fit
 Rule 1: Minimize number of connections. Channel all incoming queries through

optimal number of database connections using pgBouncer
 Rule 2: Minimize number of indexes constraints that use up performance and

resources. For example backoffice applications need quite often more and different
indexes than are needed for online queries.

 Rule 3: Keep as little data as possible in online database. Move all data that is not
need into second or third tier databases. Use remote calls to access it if needed.

 Rule 4: Keep transactions short. Using functions is the best way to do this as you
can use functions in autocommit mode and still do complex SQL operations.

 Rule 5: Keep external dependancies to the minimum then you have less things that
can get broken and affect online database. For examples run batch jobs against
second and third tier databases.

Overall picture

analysisdb backofficedb

proxydb
pgBouncer

proxydb
pgBouncer pgBouncer

onlinedb_p01
SkyTools

onlinedb_p02
SkyTools

shopdb
SkyTools

shopdb_ro
SkyTools

queuedb
SkyTools

Online databases
● Proxy db's
● pgBouncers
● OLTP db's
● read only db's

batchdb

Support databases
● Queue db's
● Datamining
● Batchjobs
● Backoffice
● Greenplum

pgBouncer – PostgreSQL Connection pooler
 pgBouncer is lightweight and robust

connection pooler for PostgreSQL.
 Reduces thousands of incoming connections

to only tens of connections in database.
 Low number of connections is important

because each connection uses computer
resources and each new connection is quite
expensive as prepared plans have to be
created each time from scratch.

 We are not using pgBouncer for load
balancing.

 Can be used to redirect database calls
(database aliases).

FrontEnd WebServer

pgBouncer

userdb

plProxy – Remote Call Language
 PL/Proxy is compact language for remote

calls between PostgreSQL databases.
 With PL/Proxy user can create proxy

functions that have same signature as
remote functions to be called. The function
body describes how the remote connection
should be acquired.

userdb

userdb_ro

 CREATE FUNCTION get_user_email(username text) RETURNS text AS $$
 CONNECT 'dbname=userdb_ro';
$$ LANGUAGE plproxy;

SkyTools: Batch Job Framework
 Written in python and contain most everything we have found

useful in our everyday work with databases and PostgreSQL.
 Framework provides database connectivity, logging, stats

management, encoding, decoding etc for batch jobs. Developers
need only to take care of business logic in batch jobs all the rest
is handled by batch jobs.

 SkyTools contains 10s of reusable generic scripts for doing
various data related tasks.

 PgQ that adds event queues to PostgreSQL.
 Londiste replication.
 Walmgr for wal based log shipping.

database

batch
job

database

database

PgQ: PostgreSQL Queues
 PgQ is PostgreSQL based event processing system. It is part of SkyTools package

that contains several useful implementations on this engine.
 Event - atomic piece of data created by Producers. In PgQ event is one record in

one of tables that services that queue. PgQ guarantees that each event is seen at
least once but it is up to consumer to make sure that event is processed no more
than once if that is needed.

 Batch - PgQ is designed for efficiency and high throughput so events are grouped
into batches for bulk processing.

 Queue - Event are stored in queue tables i.e queues. Several producers can write
into same queue and several consumers can read from the queue. Events are kept
in queue until all the consumers have seen them. Queue can contain any number of
event types it is up to Producer and Consumer to agree on what types of events are
passed and how they are encoded

 Producer - applications that pushes event into queue. Producer can be written in
any language that is able to run stored procedures in PostgreSQL.

 Consumer - application that reads events from queue. Consumers can be written in
any language that can interact with PostgreSQL.

PgQ: PostgreSQL Queues Illustration

PresenceDB

queue:
user_status

c++:
presence_listener

function:
set_user_presence

java
presence_cache1

java
presence_cache2

c++
presence_poller

python:
presence_updater

php:
presence_listener

 Database that keeps track of user status (online, offline, busy, etc.
 Producer can be anybody who can call stored procedure
 The same goes about consumers

table:
user_status

PgQ: Features
 Transactional. Event insertion is committed or rolled back together with the other

things that transaction changes.
 Efficient. Usually database based queue implementations are not efficient but we

managed to solve it because PostgreSQL makes transaction state visible to users.
 Fast. Events are processed in batches which gives low per event overhead.
 Flexible. Each queue can have several producers and consumers and any number

of event types handled in it.
 Robust. PgQ guarantees that each consumers sees event at least once. There

several methods how the processed events can be tracked depending on business
needs.

 Ideally suited for all kinds of batch processing.

plProxy

plProxy: Installation
 Download PL/Proxy from http://pgfoundry.org/projects/plproxy and extract.
 Build PL/Proxy by running make and make install inside of the plproxy directory. If

your having problems make sure that pg_config from the postgresql bin directory is
in your path.

 To install PL/Proxy in a database execute the commands in the plproxy.sql file. For
example psql -f $SHAREDIR/contrib/plproxy.sql mydatabase

 Steps 1 and 2 can be skipped if your installed pl/proxy from a packaging system
such as RPM.

 Create a test function to validate that plProxy is working as expected.
 CREATE FUNCTION get_user_email(username text)

RETURNS text AS $$
 CONNECT 'dbname=userdb';
$$ LANGUAGE plproxy;

plProxy Language
 The language is similar to plpgsql - string quoting, comments, semicolon at the

statements end.It contains only 4 statements: CONNECT, CLUSTER, RUN and
SELECT.

 Each function needs to have either CONNECT or pair of CLUSTER + RUN
statements to specify where to run the function.

 CONNECT 'libpq connstr'; -- Specifies exact location where to connect and
execute the query. If several functions have same connstr, they will use same
connection.

 CLUSTER 'cluster_name'; -- Specifies exact cluster name to be run on. The cluster
name will be passed to plproxy.get_cluster_* functions.

 CLUSTER cluster_func(..); -- Cluster name can be dynamically decided upon
proxy function arguments. cluster_func should return text value of final cluster
name.

plProxy Language RUN ON ...
 RUN ON ALL; -- Query will be run on all partitions in cluster in parallel.
 RUN ON ANY; -- Query will be run on random partition.
 RUN ON <NR>; -- Run on partition number <NR>.
 RUN ON partition_func(..); -- Run partition_func() which should return one or more

hash values. (int4) Query will be run on tagged partitions. If more than one partition
was tagged, query will be sent in parallel to them.

CREATE FUNCTION get_user_email(text)
RETURNS text AS $$
 CLUSTER 'userdb';
 RUN ON get_hash($1);
$$ LANGUAGE plproxy;

Partition selection is done by taking lower bits from hash value.
hash & (n-1), where n is power of 2.

plProxy Configuration
 Schema plproxy and three functions are needed for plProxy
 plproxy.get_cluster_partitions(cluster_name text) – initializes

plProxy connect strings to remote databases
 plproxy.get_cluster_version(cluster_name text) – used by plProxy to

determine if configuration has changed and should be read again. Should be as fast
as possible because it is called for every function call that goes through plProxy.

 plproxy.get_cluster_config(in cluster_name text, out key text,
out val text) – can be used to change plProxy parameters like connection
lifetime.
CREATE FUNCTION plproxy.get_cluster_version(i_cluster text)
RETURNS integer AS $$
 SELECT 1;
$$ LANGUAGE sql;

CREATE FUNCTION plproxy.get_cluster_config(cluster_name text,
OUT key text, OUT val text)

RETURNS SETOF record AS $$
 SELECT 'connection_lifetime'::text as key, text(30*60) as val;
$$ LANGUAGE sql;

plProxy: Configuration Functions
CREATE FUNCTION plproxy.get_cluster_partitions(cluster_name text)
RETURNS SETOF text AS $$
begin
 if cluster_name = 'userdb' then
 return next 'port=9000 dbname=userdb_p00 user=proxy';
 return next 'port=9000 dbname=userdb_p01 user=proxy';
 return;
 end if;
 raise exception 'no such cluster: %', cluster_name;
end; $$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE FUNCTION plproxy.get_cluster_partitions(i_cluster_name text)
RETURNS SETOF text AS $$
declare r record;
begin
 for r in
 select connect_string from plproxy.conf
 where cluster_name = i_cluster_name
 order by part_nr
 loop
 return next r.connect_string;
 end loop;
 if not found then
 raise exception 'no such cluster: %', i_cluster_name;
 end if;
 return;
end; $$ LANGUAGE plpgsql SECURITY DEFINER;

plProxy: Read Only Remote Calls
 We use remote calls mostly for read only queries in cases where it is not reasonable

to replicate data needed to calling database.
 For example balance data is changing very often but whenever doing decisions

based on balance we must use the latest balance so we use remote call to get user
balance.

 plProxy remote calls are not suitable for data modification because there is no
guarantee that both transactions will be committed or rolled back (No 2phase
commit). Instead of using remote calls we try to use PgQ queues and various
consumers on them that provide our 2phase commit.

shopDb

userDB

balanceDB

plProxy: Remote Calls to Archive
 Closed records from large online tables (invoices, payments, call detail records, etc)

are moved to archive database on monthly basis after month is closed and data is
locked against changes.

 Normally users work only on online table but in some cases they need to see data
from all the history.

 plProxy can used to also query data from archive database when user requests data
for longer period than online database holds.

onlineDB archiveDB

plProxy: Remote Calls for Autonomous Transactions
 PostgreSQL does not have autonomous transactions but plProxy calls can be used

for mimicking them.
 Autonomous transactions can be useful for logging failed procedure calls.
 If used extensively then usage of pgBouncer should be considered to reduce

number of additional connections needed and reducing connection creation
overhead.

plProxy: Proxy Databases as Interface
 Additional layer between application and databases.
 Keep applications database connectivity simpler giving DBA's and developer's more

flexibility for moving data and functionality around.
 It gets really useful when number of databases gets bigger then connectivity

management outside database layer gets too complicated :)

shopDb
(proxy)

internalDbshopDb userDB

backofficeDb
(proxy)

BackOffice
Application

plProxy: Proxy Databases for Security
 Security layer. By giving access to proxy database DBA's can be sure that user has

no way of accessing tables by accident or by any other means as only functions
published in proxy database are visible to user.

 Such proxy databases may be located in servers visible from outside network while
databases containing data are usually not.

manualfixDb
(proxy)

shopDb creditcardDb

ccinterfaceDb
(proxy)

BackOffice
Application

plProxy: Run On All for Data
 Also usable when exact partition where data resides is not known. Then

function may be run on all partitions and only the one that has data does
something.

userdb_p0 userdb_p1

userdb

userdb_p2 userdb_p3

CREATE FUNCTION balance.get_balances(
 i_users text[],
 OUT username text,
 OUT currency text,
 OUT balance numeric)
RETURNS SETOF record AS $$
BEGIN
 FOR i IN COALESCE(array_lower(i_users,1),0) ..
 COALESCE(array_upper(i_users,1),-1)
 LOOP
 IF partconf.valid_hash(i_users[i]) THEN
 SELECT i_users[i], u.currency, u.balance
 INTO username, currency, balance
 FROM balances
 WHERE username = i_users[i];
 RETURN NEXT;
 END IF;
 END LOOP;
 RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE FUNCTION get_balances(
 i_users text[],
 OUT user text,
 OUT currency text,
 OUT balance numeric)
RETURNS SETOF record AS $$
 CLUSTER 'userdb'; RUN ON ALL;
$$ LANGUAGE plproxy;

plProxy: Run On All for for Stats

CREATE FUNCTION stats._get_stats(
 OUT stat_name text,
 OUT stat_value bigint)
RETURNS SETOF record AS $$
 cluster 'userdb';
 run on all;
$$ LANGUAGE plproxy;

CREATE FUNCTION stats.get_stats(
 OUT stat_name text,
 OUT stat_value bigint)
RETURNS SETOF record AS $$
 select stat_name,
 (sum(stat_value))::bigint
 from stats._get_stats()
 group by stat_name
 order by stat_name;
$$ LANGUAGE sql;

CREATE FUNCTION stats._get_stats(
 OUT stat_name text,
 OUT stat_value bigint)
RETURNS SETOF record AS $$
declare
 seq record;
begin
 for seq in
 select c.relname,
 'select last_value from stats.'
 || c.relname as sql
 from pg_class c, pg_namespace n
 where n.nspname = 'stats'
 and c.relnamespace = n.oid
 and c.relkind = 'S'
 order by 1
 loop
 stat_name := seq.relname;
 execute seq.sql into stat_value;
 return next;
 end loop;
 return;
end;
$$ LANGUAGE plpgsql;

 Gather statistics from all the partitions
and return summaries to the caller

plProxy: Geographical Partitioning
 plProxy can be used to split database into partitions based on country code.

Example database is split into 'us' and 'row' (rest of the world)
 Each function call caused by online users has country code as one of the

parameters
 All data is replicated into backend database for use by backoffice applications and

batch jobs. That also reduces number of indexes needed in online databases.

onlinedb
(proxy)

onlinedb_RU onlinedb_ROW backenddb

CREATE FUNCTION get_cluster(
 i_key_cc text)
RETURNS text AS $$
BEGIN
 IF i_key_cc = 'ru' THEN
 RETURN 'oltp_ru';
 ELSE
 RETURN 'oltp_row';
 END IF;
END;
$$ LANGUAGE plpgsql;

plProxy: Application Driven Partitioning
 Sometimes same function can be run on read only replica and on online database

but the right partition is known only on runtime depending on context.
 In that situation get_cluster can be used to allow calling application to choose where

this function will be executed.

shopdb
(proxy)

shopdb_RW shopdb_RO

CREATE FUNCTION get_cluster(i_refresh boolean)
RETURNS text AS $$
BEGIN
 IF i_refresh THEN
 return 'shopdb';
 ELSE
 return 'shopdb_ro';
 END IF;
END; $$ LANGUAGE plpgsql;

shopdb_RO

plProxy: Horizontal Partitioning
 We have partitioned most of our database by username using PostgreSQL hashtext

function to get equal distribution between partitions.
 As proxy databases are stateless we can have several exact duplicates for load

balancing and high availability.

userdb_p0 userdb_p1

userdb

userdb_p2 userdb_p3

userdb

CREATE FUNCTION public.get_user_email(text)
RETURNS text AS $$
 cluster 'userdb';
 run on get_hash($1);
$$ LANGUAGE plproxy;

CREATE FUNCTION public.get_hash(
 i_key_user text)
RETURNS integer AS $$
BEGIN
 return hashtext(lower(i_key_user));
END;
$$ LANGUAGE plpgsql;

plProxy: Partitioning Partition Functions
 check_hash used to validate incoming calls
 partconf functionality to handle sequences
 validate_hash function in triggers to exclude data during split

CREATE FUNCTION public.get_user_email(i_username text)
RETURNS text AS $$
DECLARE
 retval text;
BEGIN
 PERFORM partconf.check_hash(i_username);

 SELECT email FROM users
 WHERE username = lower(i_username) INTO retval;

 RETURN retval;
END;
$$ LANGUAGE plpgsql;

plProxy: Horizontal Split
 When splitting databases we usually prepare new partitions in other servers and

then switch all traffic at once to keep our life simple.
 Steps how to increase partition count by 2x:

 Create 2 partitions for each old one.
 Replicate partition data to corresponding new partitions
 Delete unnecessary data from new partitions and cluster and analyze tables
 Prepare new plProxy configuration
 Switch over to them

 Take down ip
 Up plproxy version
 Wait replica to catch up
 Set ip up

 You can have several partitions in one server. Moving them out later will be easy.

userdb_a1userdb_a0 userdb_b0 userdb_b1 userdb_b2 userdb_b3

plProxy: Partconf
 Partconf is useful when you have split database into several partitions and there are

also failover replicas of same databases.
 Some mechanism for handling sequences id's is needed
 Some mechanism for protecting from misconfiguration makes life safer

 CREATE FUNCTION partconf.set_conf(
 i_part_nr integer ,
 i_max_part integer ,
 i_db_code integer)

Used when partconf is installed to initialize it. db_code is supposed to be unique
over all the databases.

 CREATE FUNCTION partconf.check_hash(key_user text) RETURNS boolean
used internally from other functions to validate that function call was directed to

correct partition. Raises error if not right partition for that username.
 CREATE FUNCTION global_id() RETURNS bigint

used to get globally unique id's

plProxy: Summary
 plProxy adds very little overhead when used together with pgBouncer.
 On the other hand plProxy adds complexity to development and

maintenace so it must be used with care but that is true for most
everything.

pgBouncer

pgBouncer
 pgBouncer is lightweight and robust connection pooler for Postgres.
 Low memory requirements (2k per connection by default). This is due to the fact that

PgBouncer does not need to see full packet at once.
 It is not tied to one backend server, the destination databases can reside on

different hosts.
 Supports online reconfiguration for most of the settings.
 Supports online restart/upgrade without dropping client connections.
 Supports protocol V3 only, so backend version must be >= 7.4.
 Does not parse SQL so is very fast and uses little CPU time.

pgBouncer Pooling Modes
 Session pooling - Most polite method. When client connects, a server connection

will be assigned to it for the whole duration it stays connected. When client
disconnects, the server connection will be put back into pool. Should be used with
legacy applications that won't work with more efficient pooling modes.

 Transaction pooling - Server connection is assigned to client only during a
transaction. When PgBouncer notices that transaction is over, the server will be put
back into pool. This is a hack as it breaks application expectations of backend
connection. You can use it only when application cooperates with such usage by not
using features that can break.

 Statement pooling - Most aggressive method. This is transaction pooling with a
twist - multi-statement transactions are disallowed. This is meant to enforce
"autocommit" mode on client, mostly targeted for PL/Proxy.

pgBouncer configuration
[databases]
forcedb = host=127.0.0.1 port=300 user=baz password=foo
bardb = host=127.0.0.1 dbname=bazdb
foodb =

[pgbouncer]
logfile = pgbouncer.log
pidfile = pgbouncer.pid
listen_addr = 127.0.0.1
listen_port = 6432
auth_type = any / trust / crypt / md5
auth_file = etc/userlist.txt
pool_mode = session / transaction / statement
max_client_conn = 100
default_pool_size = 20
admin_users = admin, postgres
stats_users = stats

pgBouncer console
 Connect to database 'pgbouncer':

$ psql -d pgbouncer -U admin -p 6432
 SHOW HELP;
 SHOW CONFIG: SHOW DATABASES;
 SET default_pool_size = 50;
 RELOAD;
 SHOW POOLS; SHOW STATS;
 PAUSE; PAUSE <db>;
 RESUME; RESUME <db>;

pgBouncer Use-cases
 Decreasing the number of connections hitting real databases
 Taking the logging-in load from real databases
 Central redirection point for database connections. Function s like

ServiceIP. Allows pausing, redirecting of users.
 Backend pooler for PL/Proxy
 Database aliases. You can have different external names connected to

one DSN. Makes it possible to pause them separately and merge
databases.

SkyTools/PgQ

SkyTools and PgQ
 We keep SkyTools like pgBouncer and plProxy in our standard database server

image so each new server has it installed from the start.
 Framework provides database connectivity, logging, stats management, encoding,

decoding etc for batch jobs. Developers need only to take care of business logic in
batch jobs all the rest is handled by batch jobs.

 SkyTools contains many reusable generic scripts.

PgQ: PostgreSQL Queuing
 Ideally suited for all kinds of batch processing.
 Efficient. Creating events is adds very little

overhead and queue has beautiful interface that
allows events to be created using standard SQL
insert into syntax.

 Fast. Events are processed in batches that usually
means higher speed when processing.

 Flexible. Each queue can have several producers
and consumers and any number of event types
handled in it.

 Robust. PgQ guarantees that each consumers
sees event at least once. There several methods
how the processed events can be tracked
depending on business needs.

onlinedb
SkyTools

queuedb
SkyTools

batchdb

batch
job

PgQ - Setup
Basic PgQ setup and usage can be illustrated by the following steps:
 1. create the database
 2. edit a PgQ ticker configuration file, say ticker.ini
 3. install PgQ internal tables
 $ pgqadm.py ticker.ini install
 4. launch the PgQ ticker on database machine as daemon
 $ pgqadm.py -d ticker.ini ticker
 5. create queue
 $ pgqadm.py ticker.ini create <queue>
 6. register or run consumer to register it automatically
 $ pgqadm.py ticker.ini register <queue> <consumer>
 7. start producing events

PgQ – Configuration
[pgqadm]
job_name = pgqadm_somedb

db = dbname=somedb

how often to run maintenance
maint_delay = 600

how often to check for activity
loop_delay = 0.1

logfile = ~/log/%(job_name)s.log
pidfile = ~/pid/%(job_name)s.pid

 Ticker reads event id sequence for
each queue.

 If new events have appeared, then
inserts tick if:
 Configurable amount of events

have appeared
ticker_max_count (500)

 Configurable amount of time has
passed from last tick
ticker_max_lag (3 sec)

 If no events in the queue, creates tick
if some time has passed.
 ticker_idle_period (60

sec)
 Configuring from command line:

 pgqadm.py ticker.ini
config my_queue
ticker_max_count=100

PgQ event structure
CREATE TABLE pgq.event (

 ev_id int8 NOT NULL,
 ev_txid int8 NOT NULL DEFAULT txid_current(),
 ev_time timestamptz NOT NULL DEFAULT now(),
 -- rest are user fields --
 ev_type text, -- what to expect from ev_data
 ev_data text, -- main data, urlenc, xml, json
 ev_extra1 text, -- metadata
 ev_extra2 text, -- metadata
 ev_extra3 text, -- metadata
 ev_extra4 text -- metadata

);
CREATE INDEX txid_idx ON pgq.event (ev_txid);

PgQ: Producer - API Event Insertion
 Single event insertion:

 pgq.insert_event(queue, ev_type, ev_data): int8
 Bulk insertion, in single transaction:

 pgq.current_event_table(queue): text
 Inserting with triggers:

 pgq.sqltriga(queue, ...) - partial SQL format
 pgq.logutriga(queue, ...) - urlencoded format

PgQ API: insert complex event with pure SQL
 Create interface table for queue with logutriga for encoding inserted events
 Type safety, default values, sequences, constraints!
 Several tables can insert into same queue.
 Encoding decoding is totally hidden from developers they just work with tables.

CREATE TABLE queue.mailq (
 mk_template bigint NOT NULL,
 username text NOT NULL,
 email text,
 mk_language text,
 payload text
);

CREATE TRIGGER send_mailq_trg
 BEFORE INSERT ON queue.mailq
 FOR EACH ROW
 EXECUTE PROCEDURE pgq.logutriga('mail_events', 'SKIP');

-- send e-mail
INSERT INTO queue.mailq (mk_template, username, email)
VALUES(73, _username, _email);

PgQ: Consumer - Reading Events
Registering

pgq.register_consumer(queue, consumer)
pgq.unregister_consumer(queue, consumer)
or
$ pgqadm.py <ini> register <queue> <consumer>
$ pgqadm.py <ini> unregister <queue> <consumer>

Reading
pgq.next_batch(queue, consumer): int8
pgq.get_batch_events(batch_id): SETOF record
pgq.finish_batch(batch_id)

PgQ: Tracking Events
 Per-event overhead
 Need to avoid accumulating
 pgq_ext solution

 pgq_ext.is_event_done(consumer, batch_id, ev_id)

 pgq_ext.set_event_done(consumer, batch_id, ev_id)
 If batch changes, deletes old events
 Eg. email sender, plProxy.

PgQ: Tracking Batches
 Minimal per-event overhead
 Requires that all batch is processed in one TX

 pgq_ext.is_batch_done(consumer, batch_id)

 pgq_ext.set_batch_done(consumer, batch_id)
 Eg. replication, most of the SkyTools partitioning scripts like queue_mover,

queue_splitter, table_dispatcher, cube_dispatcher.

PgQ: Queue Mover
 Moves data from source queue in one database to another queue in other database.
 Used to move events from online databases to other databases for processing or

just storage.
 Consolidates events if there are several producers as in case of partitioned

databases.

userdb_p1

userdb_p2

logdb

queue
mover

queue
mover

 [queue_mover]
 job_name = eventlog_to_target_mover

 src_db = dbname=oltpdb
 dst_db = dbname=batchdb

 pgq_queue_name = batch_events
 dst_queue_name = batch_events

 pidfile = log/%(job_name)s.pid
 logfile = pid/%(job_name)s.log

PgQ: Queue Mover Code

import pgq
class QueueMover(pgq.RemoteConsumer):
 def process_remote_batch(self, db, batch_id, ev_list, dst_db):
 # prepare data
 rows = []
 for ev in ev_list:
 rows.append([ev.type, ev.data, ev.time])
 ev.tag_done()

 # insert data
 fields = ['ev_type', 'ev_data', 'ev_time']
 curs = dst_db.cursor()
 dst_queue = self.cf.get('dst_queue_name')
 pgq.bulk_insert_events(curs, rows, fields, dst_queue)

script = QueueMover('queue_mover', 'src_db', 'dst_db', sys.argv[1:])
script.start()

PgQ: Queue Splitter
 Moves data from source queue in one database to one or more

queue's in target database based on producer. That is another version
of queue_mover but it has it's own benefits.

 Used to move events from online databases to queue databases.
 Reduces number of dependencies of online databases.

database:
userdb_pN

database:
mailqdb

producer:
welcome_emails

producer:
password_emails

queue:
batch_events

queue;
welcome_emails

queue:
password_emails

queue
splitter

promotional
mailer

transactional
mailer

PgQ: Simple Consumer
 Simplest consumer. Basic idea is to read url encoded events from queue and

execute SQL using fields from those events as parameters.
 Very convenient when you have events generated in one database and want to get

background processing or play them into another database.
 Does not guarantee that each event is processed only once so it's up to the called

function to guarantee that duplicate calls will be ignored.

[simple_consumer]
job_name = job_to_be_done
src_db = dbname=sourcedb
dst_db = dbname=targetdb
pgq_queue_name = event_queue
dst_query =
 SELECT * FROM function_to_be_run(%%(username)s, %%(email)s);

logfile = ~/log/%(job_name)s.log
pidfile = ~/pid/%(job_name)s.pid

PgQ: Simple Serial Consumer
 Similar to simpler consumer but uses pgq_ext to guarantee that each event will be

processed only once.

import sys, pgq, skytools

class SimpleSerialConsumer(pgq.SerialConsumer):
 def __init__(self, args):
 pgq.SerialConsumer.__init__(self,"simple_serial_consumer","src_db","dst_db", args)
 self.dst_query = self.cf.get("dst_query")

 def process_remote_batch(self, batch_id, ev_list, dst_db):
 curs = dst_db.cursor()
 for ev in ev_list:
 payload = skytools.db_urldecode(ev.payload)
 curs.execute(self.dst_query, payload)
 res = curs.dictfetchone()
 ev.tag_done()

if __name__ == '__main__':
 script = SimpleSerialConsumer(sys.argv[1:])
 script.start()

PgQ: Table Dispatcher
 Has url encoded events as data source and writes them into table on target
 database.
 Used to partiton data. For example change log's that need to kept online only shortly
 can be written to daily tables and then dropped as they become irrelevant.
 Also allows to select which columns have to be written into target database
 Creates target tables according to configuration file as needed

queue:
call_records

table:cr
cr_2008_09_01
cr_2008_09_02
...

table:history
history_2008_09
history_2008_10
...

table
dispatcher

table
dispatcher

PgQ: Cube Dispatcher
 Has url encoded events as data source and writes them into partitoned tables in

target database. Logutriga is used to create events.
 Used to provide batches of data for business intelligence and data cubes.
 Only one instance of each record is stored. For example if record is created and

then updated twice only latest version of record stays in that days table.
 Does not support deletes.

queue:
 cube_events

producer:
invoices

producer:
payments

table:invoices
invoices_2008_09_01
invoices_2008_09_02
...

table:payments
payments_2008_09_01
payments_2008_09_02
...

cube
dispatcher

Londiste

Londiste: Replication
 We use replication

 to transfer online data into internal databases
 to create failover databases for online databases.
 to switch between PostgreSQL versions
 to distribute internally produced data into online servers
 to create read only replicas for load balancing

 Londiste is implemented using PgQ as transport layer.
 It has DBA friendly command line interface.

shopdb
(failover)

analysisdb
(internal)

shopdb
(online)

shopdb_ro
(read only)

Londiste: Setup
 1. create the subscriber database, with tables to replicate
 2. edit a londiste configuration file, say conf.ini, and a PgQ ticker
 configuration file, say ticker.ini
 3. install londiste on the provider and subscriber nodes. This step
 requires admin privileges on both provider and subscriber sides,
 and both install commands can be run remotely:
 $ londiste.py conf.ini provider install
 $ londiste.py conf.ini subscriber install
 4. launch the PgQ ticker on the provider machine:
 $ pgqadm.py -d ticker.ini ticker
 5. launch the londiste replay process:
 $ londiste.py -d conf.ini replay
 6. add tables to replicate from the provider database:
 $ londiste.py conf.ini provider add table1 table2 ...
 7. add tables to replicate to the subscriber database:
 $ londiste.py conf.ini subscriber add table1 table2 ...

Londiste: Configuration
 [londiste]
 job_name = londiste_providerdb_to_subscriberdb

 provider_db = dbname=provider port=5432 host=127.0.0.1
 subscriber_db = dbname=subscriber port=6432 host=127.0.0.1

 # it will be used as sql ident so no dots/spaces
 pgq_queue_name = londiste.replika

 logfile = /tmp/%(job_name)s.log
 pidfile = /tmp/%(job_name)s.pid

Londiste: Usage
 Tables can be added one-by-one into set.
 Initial COPY for one table does not block event replay for other tables.
 Can compare tables on both sides.
 Supports sequences.
 There can be several subscribers listening to one provider queue.
 Each subscriber can listen to any number of tables provided by

provider all the other events are ignored.

That was not all

SkyTools: WalMgr
 Used to creat standby servers inside same colocation.
 Also provides point in time recovery.
 Requires more network bandwidth than londiste but has very little

management overhead.
 Most common usage is when servers starts showing signs of braking

down then we move database into gresh server until other one gets
fixed.

 Also upgrade on better hardware is quite common.

SODI Framework
 Rapid application development
 Cheap changes
 Most of the design is in metadata.
 Application design stays in sync with application over

time.
 Minimizes number of database roundtrips.
 Can send multiple recordsets to one function call.
 Can receive several recordsets from function call.

Application layer
- java / php ...
- UI logic
. mostly generated
- SODI framework

AppServer layer:
- java / php(...
- user authentication
- roles rights
- no business logic

Database layer
- business logic
- plPython
- PostgreSQL
- SkyTools

CREATE FUNCTION meta.get_iotype(i_context text, i_params text)
RETURNS SETOF public.ret_multiset AS $$
 import dbservice2
 dbs = dbservice2.ServiceContext(i_context, GD)
 params = dbs.get_record(i_params)

 sql = """
 select id_iotype, mod_code, schema || '.' || iotype_name as iotype
 , comments ,version
 from meta.iotype
 where id_iotype = {id_iotype}
 """
 dbs.return_next_sql(sql, params, 'iotype')

 sql = """
 select id_iotype_attr, key_iotype ,attr_name, mk_datatype
 , comments, label, version, order_by, br_codes
 from meta.iotype_attr
 where key_iotype = {id_iotype}
 order by order_by
 """
 dbs.return_next_sql(sql, params, 'ioattr')

 return dbs.retval()
$$ LANGUAGE plpythonu;

Multiple Recordsets in Function Resultset

Multiple Recordsets as Function Parameters
CREATE FUNCTION dba.set_role_grants(
 i_context text,
 i_params text,
 i_roles text,
 i_grants text)
RETURNS SETOF public.ret_multiset AS $$
 import dbservice2
 dbs = dbservice2.ServiceContext(i_context, GD)
 params = dbs.get_record(i_params)
 t_roles = dbs.get_record_list(i_roles)
 t_grants = dbs.get_record_list(i_grants)
...
 for r in t_roles:
 key_role = roles.get(r.role_name)
 r.id_host = params.id_host
 r.key_role = key_role

 if key_role is None:
 dbs.run_query("""
 insert into dba.role (
 key_host, role_name, system_privs, role_options, password_hash
 , connection_limit, can_login, granted_roles
) values (
 {id_host},{role_name},{system_privs},{role_options},{password_hash}
 , {connection_limit},{can_login},string_to_array({granted_roles},','))
 """, r)
 dbs.tell_user(dbs.INFO, 'dbs1213', 'Role added: %s' % r.role_name)
...

That Was All
 :)

