Ranges, Partitioning, and
Limitations

PGConf US 2016
Corey Huinker

What is this talk about?

An overview of what Range Types are and what they can
do.

A series of gripes about what they can't do.

Cool uses for Range Types in my work at Moat (http://moat.
com).

http://moat.com
http://moat.com
http://moat.com

Why are Range Types Important?

e They allow your data to more accurately convey
meaning.

e They allow your code to more accurately convey
intention.

e |Indexability, Exclusion constraints

e No other RDBMS has them 1, giving PostgreSQL an
expressive advantage.

[1] - I haven't looked too hard.

Range Basics: Bounds

Ranges behave like and are denoted by standard
mathematical Interval Notation.

Notation Means Notation Means

(x values > x [% values >= x

V) values < y y] values <=y

(, No lower bound ;) No upper bound

(,) everything empty No values

Constructing Ranges

Casting from text:
select '[low,high]'::rangetype

: : Omitting a bound means
select '[low,) '::rangetype unbounded, regardless of inc/excl

Creation through constructor function
select rangetype (low,high, "[)") Nulling a bound is the same as
select rangetype (null,high, '[)") omitting it.

Note: no polymorphic constructor B——
select to range (null::rangetype,low,high,'[]");

Range Basics: Existing Types

e int4range: Range of integer

e int8range: Range of bigint

e numrange: Range of numeric

e tsrange: Range of timestamp without time zone
e tstzrange: Range of timestamp with time zone

e daterange: Range of date

® boolrange: Range of boolean
® tfextrange: range of text

Why no textrange type?

e Collation Sequences.
o Would need on textrange per collation sequence.
e No telling how many collations are installed.
o Or what order they were installed in.
e Need one oid per range type, just like any other type.
Would have to pre-allocate them with static type definitions.
e Not going to burn that many oids on a bunch of maybes.
o So just define one type per collation sequence that you'll need
m You probably only need "C" and maybe one other.

create type textrange c as range (subtype = text, collation = "C");

Attribute functions:

Ranges can be decomposed into their component
attributes.

create temp table temps (state text, rng numrange);

insert into temps wvalues ('ice', '(,32.0)"),
('water', numrange (32.0,212.0,"'[) ")),
('steam', numrange (212.0,null)),
(

'heat death', 'empty'):
select * from temps;

state | rng
____________ _|_______________
ice | (,32.0)
water | [32.0,212.0)
steam | [212.0,)

heat death | empty

Attribute functions In Action:

\pset null '=m' This is really useful when sharing examples, but might

Null display is "=". be confusing if you think that's a currency symbol.

select state, lower(rng) as low, lower inc(rng) as low inc, lower inf
(rng) as low inf, upper(rng), upper inc(rng), upper inf (rng), isempty(rng)
as empty from temps;

state | low | low inc | low inf | upper | upper inc | upper inf | empty
———————————— e e e et e ittt
ice | n | f | t | 32.0 | £ | £ | £
water | 32.0 | t | £ | 212.0 | £ | £ | £
steam | 212.0 | t | £ | n | f | t | £
heat death | x| f | £ | x| f | £ | €

(4 rows)

Operators: =, <>

Discrete ranges normalize to the [) bound via the defined canonical function,
and are then tested for equivalence. Continuous ranges do not have a
canonical function, and are tested as-is.

Expression Result
select '(1,10]'::int4range; [2,11)
select 'l[yesterday,today]'::daterange = ‘

' [yesterday, tomorrow) '::daterange;
select '[1,3]'::numrange = '[1,4)"'::numrange; f
select '[1,3]'::numrange = £

'[1,3.00000000000000000001) '::numrange;

Operators: <, <=, >, >=

e Test lower bound scalar first, then use upper bound as a tiebreaker
o Which isn't really intuitive, but then again neither are the alternatives:
m Median?
m Number of (discrete) values contained?
e Therefore, not generally useful for userland queries.
e Used internally for indexing.

Operator <<

e "Strictly to the left of"
e a << b if normalized upper bound of a is < normalized
lower bound of b

select 'I[1, 3)
"[1,3]
al az
____+____
t | £

::intdrange << '[3,5)
::intdrange << '[3,5)

::intd4range as al,
::intdrange as a2;

Operator >>

e "Strictly to the right of"
e a >> b if normalized lower bound of a is > normalized
upper bound of b

select '[today,tomorrow)'::daterange >>
' [yesterday, today) ': :daterange as al,
'[today, tomorrow) '::daterange >>
' [yesterday, today]'::daterange as aZ2;
al | a2
e

Operator &<

e "Does not extend to the right of"
e No element of a is > greatest element of b

select daterange('[today, tomorrow) ') &<
daterange (' [yesterday, today) ') as x,
int4range('[10,20) ") &< intd4range('[10,20]"') as y;
x |y
e
f | t

Operator &>

e "Does not extend to the left of"
e No element of a is < least element of b

select '[3,10)'::intd4range &> '[1,4)'::intd4range as x,

'[0,10) '::intd4range &> '[1,4) '::intd4range as y;

Operator - | -

e "adjacent”
e There is no overlap nor space between a and b.
e |t doesn't matter which range is lower

select '[4,10)'::intd4range -|- '[1,4)'::intdrange as x,
'[1,3]"'"::intd4range —-|- '[5,10]"'::int4range as vy,
'[1,10]"'::intd4range -|- '[5,15]"'::intd4range as z;

x|yl z

b

Operators <@ and @>

e "contains", same as the geometric operators

e The value or range on the pointy side fits entirely within
the range on the @ side

e |t doesn't matter which range is lower

select 1 <@ '[1,4]'::intd4range as u,
'[20,30)"'"::intd4range <@ '[1,100]'::intd4range as v,
'infinity'::date <@ '(,)'::daterange as w,
'"(,)'::intd4range @> 'empty'::intd4range as X,
'"(,) '::int4range @> null as y;
u | v I|w/| x|y

R e
t]t | t | t | =

Operator &&

e "overlap", same as the geometric operator
e At least one value can fit in both ranges

select '[20,30)'::intd4range && '[1,100]'::intd4range as v,
'"(,)'::int4range && 'empty'::intdrange as x;
v X
____|____
t | £

select 'empty'::intdrange <@ ' (,)
'empty'::intd4range && ' (,)

'::int4range as v,
'::intd4range as x;
\% X
____|____

t | £

OperatOr + (and the range merge () function)

e Union: All elements in both, if there are no gaps

select intd4range(l,4) + intdrange(2,10) as x;

select int4drange(l,2) + intd4range(99,100) as vy;

ERROR: result of range union would not be contiguous

select range merge (int4range(l,2),int4range(99,100)) as z;
z

————————— New in 9.5!

[1,100) Available for earlier version in range_type_functions on PGXN

Operator *

e Intersection: all elements in common, if any

select int4range(l,4) * intd4range(4,100) as x,
int4range(1,4,'[]"') * intd4range(4,100) as vy;

Operator -

e Difference: all elements in a but notin b
e Will raise an error if the difference would return 2
disjoint sets

select int4range(1,100) - intd4range(1l,10) as x;
X
[10,100)
select intd4range(1,100) - intd4range(2,10) as x;

ERROR: result of range difference would not be contiguous

Missing Function: range split()

e Same as the - operator, but returning the left side
remainder and right side remainder

e returns an array of the resulting ranges

e a SRF would be nice too.

hypotethical# select range split('[1,100]'::int4range,

'[2,4]'::intd4range) as Xx;

Missing Operators =|, |=

Operators to test whether two ranges share a lower (=)
bound or upper bound (| =)

hypotethical# select '[1l,4]'::intd4range =| '[1,10]'::intd4range as w,
'[1,4]'::intd4range =| '(1,10]'::int4range as x,
'"[1,4]'::int4range |= '(,4]"'::intd4range as vy,
'[1,4]'::intd4range |= '(,4) '::intd4range as z;

Missing Operators: elem <<, >>

e Same as the current <</>> operators, but allow the one
arg to be a scalar.
e May be a problem for existing bitshift operators

hypotethical# select 1l::integer << '[1,10]'::int4range as w,
l::integer << '(1,4]'::int4range as x,
4::integer >> '[1,4]'::intd4range as vy,
4::integer >> '(,4)'::intd4range as z;

w x|yl z

gy Can be simulated by creating a singleton range:

int4range(l,1,'[]"') << intd4range(2,11,'[]")

Missing Operator: elem <=> range

e Returns 0 if element a <@ range b.
o -lifa<<b,1ifa>>b
e Dbasically strcmp() but for ranges

hypotethical# select 1l::integer <=> '[1,10]"'::intd4range as w,
l::integer <=> '(1,4]'::intd4range as x,
4::integer <=> '[1,4]'::intd4range as vy,

1(4

4::integer <=> ,4) '::int4range as z;

Implemented as
i St B element_range_comp() in
0] -110 1 1 range_type functions on PGXN

Missing Functions: is singleton ()

e Return true if the range can contain only one element.

select is singleton('[4,5)'::int4range); Found in
is_singleton range_type_functions on
—————————————— PGXN
t
select is singleton('[4,5]'::int4range);

is singleton

Missing Functions: get bounds

e Represent either or both bounds conditions as SQL
e Helpful when constructing CHECK / WHERE clauses or
dealing with foreign systems that don't support that

range type or ranges in general.

with t(c) as (values('[1l,4]'::intd4range)) Found in
range_type functions on
PGXN

select get lower bound condition expr(c) as 1,
get upper bound condition expr(c) as u,
")

get bounds condition expr(c, 'zz as b from t;

Partitioning by Ranges Use Case

Use case is a series of "typeahead search" tables:

Hundreds of millions of rows.

Grouped by a taxonomy of 5 text strings of increasing
length.

The searchable text is usually 5-20 words per record
Need a way to partition the table, but only text types
available.

Distribution is highly uneven along strict alphabetical
lines.

Text Range Partitioning Advantages

e partitions have smaller GIN indexes on the searchable
columns, so smaller Bitmapand steps

e Ability to isolate very large clients.

e Search dataset evolves over time the lumps in the data
move, but slowly.

e Partition maintenance only when data is starting to
skew, much different from timeseries.

create type textrange murica as range (subtype = text,

collation = "en US");

range _partitioning module

e On PGXN
e Functions closely match those in pg_partman.

O

O

create parent (table,column name)

m starts with implied range of (,)

create partition(table,new range)

m new partition range must be perfect subset of an
existing range, and match lower or upper bound.

drop partition(lost part, kept part)

m merge all data from lost_part into kept_part

range _partitioning module

SELECT / INSERT / UPDATE queries are transparent.
Does trigger function for transparent INSERT

Probably better having bulk loads separated by
partitioned value, and probing for the destination
partition with get destination partition(), if possible.
The create parent () function cannot seamlessly derive
the base type if more than one range type has that base

type.
Ranges are specified as un-casted text strings.

range partitioning example

Use case: Message board for fans of TV shows. The site's users skew heavily
towards certain niche shows.!"
/* Turn existing table into a parent table. One partition with range (,) */
select range partitioning.create parent ('public.spoiler alerts',

'tv_show name');

/* Create a partition just for the show ARCHER, but all new partitions must
share an edge with an existing partition, so you may need to explicitly
create more than one */
select range partitioning.create partition('public.spoiler alerts',

' (,ARCHER) ') ;
select range partitioning.create partition('public.spoiler alerts',

' [ARCHER, ARCHER] ') ;

[1] The niche is defined as "Shows | can name".

range _partitioning example (part 2)

/* Create a partition that covers DAREDEVIL, FAMILY GUY, and some others *x/

select range partitioning.create partition('public.spoiler alerts',
' (ARCHER, GAME OF THRONES]') ;

/* Create a partition just for the show RICK AND MORTY, again sharing an
edge */
select range partitioning.create partition('public.spoiler alerts',

' (RICK_AND MORTY,)');

select range partitioning.create partition('public.spoiler alerts',
' [RICK_AND MORTY,RICK AND MORTY]');

range partitioning: partition list

select partition number, range

from range partitioning.partition

where master class = 'public.spoiler alerts'::regclass;

partition number | range
__________________ o

0 | (GAME OF THRONES,RICK AND MORTY)

1 | (,ARCHER)

2 | [ARCHER,ARCHER]

3 | (ARCHER,GAME OF THRONES]

4 | (RICK_AND MORTY,)

5 | [RICK AND MORTY,RICK AND MORTY]

range partitioning type discovery

The create parent (table,column) function doesn't need to have the range type
specified if only one range type would work for that column.

/* if this returns more than one row, then we have to specify a range type
*/
select rt.rngtypid

from pPg attribute a

Jjoin Pg range rt

on rt.rngsubtype = a.atttypid

and rt.rngcollation = a.attcollation

where a.attrelid = 'my schema.my parent table'::regclass

and a.attname = 'my partitioning column';

Complex Range Partitioning

e Possible to partition on ranges of complex types

o That complex type must exist in the table itself, it

can't be more than one column
m So re-expose the components in a view.

create type quite complex as (a text collate "C", b text collate "C",
c text collate "C", d text collate "C");

CREATE TYPE

create type gc range as range (subtype = quite complex);
CREATE TYPE
select '[" (Abel,Baker,Charlie,Delta''s)"," (Walter,X-Ray,Yellow,)") " '::

dc_range;
gc_range

[" (Abel, Baker,Charlie,Delta's)"," (Walter,X-Ray,Yellow,)")

Future Direction: range partitioning

e Add functions to predict proper partition ranges for equal-ish row counts
o width buckets () works ok, but will sometimes skip some buckets
entirely. You ask for 16 partitions, get 13.
e Add functions to analyze existing partitions for skew
e Become obsolete.
o Native Partitions coming to PostgreSQL in 9.7, probably.
o Existing work supports ranges but not range syntax.

Links

Range Partitioning extension:
PGXN: http://pgxn.org/dist/range_partitioning/

GitHub: https://qgithub.com/moat/range partitioning

Range Type Functions:
PGXN: http://pgxn.org/dist/range_type_functions/

GitHub: https://github.com/moat/range type functions

http://pgxn.org/dist/range_partitioning/
https://github.com/moat/range_partitioning
http://pgxn.org/dist/range_type_functions/
https://github.com/moat/range_type_functions

