
Ranges, Partitioning, and
Limitations

PGConf US 2016
Corey Huinker

What is this talk about?
An overview of what Range Types are and what they can
do.

A series of gripes about what they can't do.

Cool uses for Range Types in my work at Moat (http://moat.
com).

http://moat.com
http://moat.com
http://moat.com

Why are Range Types Important?
● They allow your data to more accurately convey

meaning.
● They allow your code to more accurately convey

intention.
● Indexability, Exclusion constraints
● No other RDBMS has them [1], giving PostgreSQL an

expressive advantage.

[1] - I haven't looked too hard.

Range Basics: Bounds

Ranges behave like and are denoted by standard
mathematical Interval Notation.

Notation Means Notation Means

(x values > x [x values >= x

y) values < y y] values <= y

(, No lower bound ,) No upper bound

(,) everything empty No values

Constructing Ranges
Casting from text:

select '[low,high]'::rangetype

select '[low,)'::rangetype

Creation through constructor function
select rangetype(low,high,'[)')

select rangetype(null,high,'[)')

Note: no polymorphic constructor
select to_range(null::rangetype,low,high,'[]');

NOPE

Omitting a bound means
unbounded, regardless of inc/excl

Nulling a bound is the same as
omitting it.

Range Basics: Existing Types

● int4range: Range of integer

● int8range: Range of bigint

● numrange: Range of numeric

● tsrange: Range of timestamp without time zone

● tstzrange: Range of timestamp with time zone

● daterange: Range of date

● boolrange: Range of boolean

● textrange: range of text

Why no textrange type?

● Collation Sequences.
○ Would need on textrange per collation sequence.

● No telling how many collations are installed.
○ Or what order they were installed in.

● Need one oid per range type, just like any other type.
● Would have to pre-allocate them with static type definitions.
● Not going to burn that many oids on a bunch of maybes.

○ So just define one type per collation sequence that you'll need
■ You probably only need "C" and maybe one other.

create type textrange_c as range (subtype = text, collation = "C");

Attribute functions:
Ranges can be decomposed into their component
attributes.
create temp table temps(state text, rng numrange);
insert into temps values ('ice', '(,32.0)'),
 ('water', numrange(32.0,212.0,'[)')),
 ('steam', numrange(212.0,null)),
 ('heat death', 'empty');
select * from temps;
 state | rng
------------+--------------
 ice | (,32.0)
 water | [32.0,212.0)
 steam | [212.0,)
 heat death | empty

Attribute functions In Action:
\pset null '¤'
Null display is "¤".
select state, lower(rng) as low, lower_inc(rng) as low_inc, lower_inf
(rng) as low_inf, upper(rng), upper_inc(rng), upper_inf(rng), isempty(rng)
as empty from temps;

 state | low | low_inc | low_inf | upper | upper_inc | upper_inf | empty
------------+-------+---------+---------+-------+-----------+-----------+-------
 ice | ¤ | f | t | 32.0 | f | f | f
 water | 32.0 | t | f | 212.0 | f | f | f
 steam | 212.0 | t | f | ¤ | f | t | f
 heat death | ¤ | f | f | ¤ | f | f | t
(4 rows)

This is really useful when sharing examples, but might
be confusing if you think that's a currency symbol.

Operators: =, <>
Discrete ranges normalize to the [) bound via the defined canonical function,
and are then tested for equivalence. Continuous ranges do not have a
canonical function, and are tested as-is.

Expression Result

select '(1,10]'::int4range; [2,11)

select '[yesterday,today]'::daterange =

 '[yesterday,tomorrow)'::daterange;
t

select '[1,3]'::numrange = '[1,4)'::numrange; f

select '[1,3]'::numrange =

 '[1,3.00000000000000000001)'::numrange;
f

Operators: <, <=, >, >=

● Test lower bound scalar first, then use upper bound as a tiebreaker
○ Which isn't really intuitive, but then again neither are the alternatives:

■ Median?
■ Number of (discrete) values contained?

● Therefore, not generally useful for userland queries.
● Used internally for indexing.

=

<

less than

int4range(1,10) < int4range(2,3)

t

>

greater than

int4range(1,10) > int4range(1,5)

t

<=

less than or equal

numrange(1.1,2.2) <= numrange(1.1,2.2)

t

>=

greater than or equal

numrange(1.1,2.2) >= numrange(1.1,2.0)

t

@>

contains range

int4range(2,4) @> int4range(2,3)

t

@>

contains element

'[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp

t

<@

range is contained by

int4range(2,4) <@ int4range(1,7)

t

<@

element is contained by

42 <@ int4range(1,7)

f

&&

overlap (have points in common)

int8range(3,7) && int8range(4,12)

t

<<

strictly left of

int8range(1,10) << int8range(100,110)

t

>>

strictly right of

int8range(50,60) >> int8range(20,30)

t

&<

does not extend to the right of

int8range(1,20) &< int8range(18,20)

t

&>

does not extend to the left of

int8range(7,20) &> int8range(5,10)

t

-|-

is adjacent to

numrange(1.1,2.2) -|- numrange(2.2,3.3)

t

+

union

numrange(5,15) + numrange(10,20)

[5,20)

*

intersection

int8range(5,15) * int8range(10,20)

[10,15)

-

difference

int8range(5,15) - int8range(10,20)

[5,10)

Operator <<
● "Strictly to the left of"
● a << b if normalized upper bound of a is < normalized

lower bound of b
select '[1,3)'::int4range << '[3,5)'::int4range as a1,
 '[1,3]'::int4range << '[3,5)'::int4range as a2;
 a1 | a2
----+----
 t | f

Operator >>
● "Strictly to the right of"
● a >> b if normalized lower bound of a is > normalized

upper bound of b
select '[today,tomorrow)'::daterange >>

 '[yesterday,today)'::daterange as a1,

 '[today,tomorrow)'::daterange >>

 '[yesterday,today]'::daterange as a2;

 a1 | a2

----+----

 t | f

Operator &<
● "Does not extend to the right of"
● No element of a is > greatest element of b

select daterange('[today,tomorrow)') &<

 daterange('[yesterday,today)') as x,

 int4range('[10,20)') &< int4range('[10,20]') as y;

 x | y

---+---

 f | t

(1 row)

Operator &>
● "Does not extend to the left of"
● No element of a is < least element of b
select '[3,10)'::int4range &> '[1,4)'::int4range as x,

 '[0,10)'::int4range &> '[1,4)'::int4range as y;

 x | y

---+---

 t | f

Operator -|-
● "adjacent"
● There is no overlap nor space between a and b.
● It doesn't matter which range is lower

select '[4,10)'::int4range -|- '[1,4)'::int4range as x,

 '[1,3]'::int4range -|- '[5,10]'::int4range as y,

 '[1,10]'::int4range -|- '[5,15]'::int4range as z;

 x | y | z

---+---+---

 t | f | f

Operators <@ and @>
● "contains", same as the geometric operators
● The value or range on the pointy side fits entirely within

the range on the @ side
● It doesn't matter which range is lower
select 1 <@ '[1,4]'::int4range as u,
 '[20,30)'::int4range <@ '[1,100]'::int4range as v,
 'infinity'::date <@ '(,)'::daterange as w,
 '(,)'::int4range @> 'empty'::int4range as x,
 '(,)'::int4range @> null as y;

 u | v | w | x | y
---+---+---+---+---
 t | t | t | t | ¤

Operator &&
● "overlap", same as the geometric operator
● At least one value can fit in both ranges
select '[20,30)'::int4range && '[1,100]'::int4range as v,
 '(,)'::int4range && 'empty'::int4range as x;
 v | x
---+---
 t | f

select 'empty'::int4range <@ '(,)'::int4range as v,
 'empty'::int4range && '(,)'::int4range as x;
 v | x
---+---
 t | f

Operator + (and the range_merge() function)

● Union: All elements in both, if there are no gaps
select int4range(1,4) + int4range(2,10) as x;
 x

 [1,10)

select int4range(1,2) + int4range(99,100) as y;

ERROR: result of range union would not be contiguous

select range_merge(int4range(1,2),int4range(99,100)) as z;

 z

 [1,100)

New in 9.5!
Available for earlier version in range_type_functions on PGXN

● Intersection: all elements in common, if any

select int4range(1,4) * int4range(4,100) as x,

 int4range(1,4,'[]') * int4range(4,100) as y;

 x | y

-------+-------

 empty | [4,5)

Operator *

Operator -
● Difference: all elements in a but not in b
● Will raise an error if the difference would return 2

disjoint sets
select int4range(1,100) - int4range(1,10) as x;

 x

 [10,100)

select int4range(1,100) - int4range(2,10) as x;

ERROR: result of range difference would not be contiguous

Missing Function: range_split()
● Same as the - operator, but returning the left side

remainder and right side remainder
● returns an array of the resulting ranges
● a SRF would be nice too.
hypotethical# select range_split('[1,100]'::int4range,

 '[2,4]'::int4range) as x;

 x

{[1,2),[2,5),[5,100]}

Missing Operators =|, |=
Operators to test whether two ranges share a lower (=|)
bound or upper bound (|=)

hypotethical# select '[1,4]'::int4range =| '[1,10]'::int4range as w,

 '[1,4]'::int4range =| '(1,10]'::int4range as x,

 '[1,4]'::int4range |= '(,4]'::int4range as y,

 '[1,4]'::int4range |= '(,4)'::int4range as z;

 w | x | y | z

---+---+---+---

 t | f | t | f

Missing Operators: elem <<, >>
● Same as the current <</>> operators, but allow the one

arg to be a scalar.
● May be a problem for existing bitshift operators
hypotethical# select 1::integer << '[1,10]'::int4range as w,

 1::integer << '(1,4]'::int4range as x,

 4::integer >> '[1,4]'::int4range as y,

 4::integer >> '(,4)'::int4range as z;

 w | x | y | z

---+---+---+---

 f | t | f | t

Can be simulated by creating a singleton range:
int4range(1,1,'[]') << int4range(2,11,'[]')

Missing Operator: elem <=> range
● Returns 0 if element a <@ range b.
● -1 if a << b, 1 if a >> b
● basically strcmp() but for ranges
hypotethical# select 1::integer <=> '[1,10]'::int4range as w,

 1::integer <=> '(1,4]'::int4range as x,

 4::integer <=> '[1,4]'::int4range as y,

 4::integer <=> '(,4)'::int4range as z;

 w | x | y | z

---+----+---+---

 0 | -1 | 0 | 1

Implemented as
element_range_comp() in
range_type_functions on PGXN

Missing Functions: is_singleton()
● Return true if the range can contain only one element.

select is_singleton('[4,5)'::int4range);
 is_singleton

 t

select is_singleton('[4,5]'::int4range);
 is_singleton

 f

Found in
range_type_functions on
PGXN

Missing Functions: get bounds
● Represent either or both bounds conditions as SQL
● Helpful when constructing CHECK / WHERE clauses or

dealing with foreign systems that don't support that
range type or ranges in general.

with t(c) as (values('[1,4]'::int4range))

 select get_lower_bound_condition_expr(c) as l,

 get_upper_bound_condition_expr(c) as u,

 get_bounds_condition_expr(c,'zz') as b from t;

 l | u | b
-------------------+------------------+--
 x >= '1'::integer | x < '5'::integer | zz >= '1'::integer and zz < '5'::integer

Found in
range_type_functions on
PGXN

Partitioning by Ranges Use Case
Use case is a series of "typeahead search" tables:
● Hundreds of millions of rows.
● Grouped by a taxonomy of 5 text strings of increasing

length.
● The searchable text is usually 5-20 words per record
● Need a way to partition the table, but only text types

available.
● Distribution is highly uneven along strict alphabetical

lines.

Text Range Partitioning Advantages
● partitions have smaller GIN indexes on the searchable

columns, so smaller BitmapAnd steps
● Ability to isolate very large clients.
● Search dataset evolves over time the lumps in the data

move, but slowly.
● Partition maintenance only when data is starting to

skew, much different from timeseries.

create type textrange_murica as range (subtype = text,

collation = "en_US");

range_partitioning module
● On PGXN
● Functions closely match those in pg_partman.

○ create_parent(table,column_name)
■ starts with implied range of (,)

○ create_partition(table,new_range)
■ new partition range must be perfect subset of an

existing range, and match lower or upper bound.
○ drop_partition(lost_part,kept_part)

■ merge all data from lost_part into kept_part

range_partitioning module
● SELECT / INSERT / UPDATE queries are transparent.
● Does trigger function for transparent INSERT
● Probably better having bulk loads separated by

partitioned value, and probing for the destination
partition with get_destination_partition(), if possible.

● The create_parent() function cannot seamlessly derive
the base type if more than one range type has that base
type.

● Ranges are specified as un-casted text strings.

range_partitioning example
Use case: Message board for fans of TV shows. The site's users skew heavily
towards certain niche shows.[1]

/* Turn existing table into a parent table. One partition with range (,) */
select range_partitioning.create_parent('public.spoiler_alerts',
 'tv_show_name');

/* Create a partition just for the show ARCHER, but all new partitions must
share an edge with an existing partition, so you may need to explicitly
create more than one */
select range_partitioning.create_partition('public.spoiler_alerts',
 '(,ARCHER)');
select range_partitioning.create_partition('public.spoiler_alerts',
 '[ARCHER,ARCHER]');
[1] The niche is defined as "Shows I can name".

range_partitioning example (part 2)
/* Create a partition that covers DAREDEVIL, FAMILY_GUY, and some others */
select range_partitioning.create_partition('public.spoiler_alerts',
 '(ARCHER,GAME_OF_THRONES]');

/* Create a partition just for the show RICK_AND_MORTY, again sharing an
edge */
select range_partitioning.create_partition('public.spoiler_alerts',
 '(RICK_AND_MORTY,)');
select range_partitioning.create_partition('public.spoiler_alerts',
 '[RICK_AND_MORTY,RICK_AND_MORTY]');

range_partitioning: partition list
select partition_number, range
 from range_partitioning.partition
 where master_class = 'public.spoiler_alerts'::regclass;

 partition_number | range
------------------+----------------------------------
 0 | (GAME_OF_THRONES,RICK_AND_MORTY)
 1 | (,ARCHER)
 2 | [ARCHER,ARCHER]
 3 | (ARCHER,GAME_OF_THRONES]
 4 | (RICK_AND_MORTY,)
 5 | [RICK_AND_MORTY,RICK_AND_MORTY]

range_partitioning type discovery
The create_parent(table,column) function doesn't need to have the range type
specified if only one range type would work for that column.

/* if this returns more than one row, then we have to specify a range type
*/
select rt.rngtypid
from pg_attribute a
join pg_range rt
on rt.rngsubtype = a.atttypid
and rt.rngcollation = a.attcollation
where a.attrelid = 'my_schema.my_parent_table'::regclass
and a.attname = 'my_partitioning_column';

Complex Range Partitioning
● Possible to partition on ranges of complex types

○ That complex type must exist in the table itself, it
can't be more than one column
■ So re-expose the components in a view.

create type quite_complex as (a text collate "C", b text collate "C",
 c text collate "C", d text collate "C");
CREATE TYPE
create type qc_range as range (subtype = quite_complex);
CREATE TYPE
select '["(Abel,Baker,Charlie,Delta''s)","(Walter,X-Ray,Yellow,)")'::
qc_range;
 qc_range

 ["(Abel,Baker,Charlie,Delta's)","(Walter,X-Ray,Yellow,)")

Future Direction: range_partitioning
● Add functions to predict proper partition ranges for equal-ish row counts

○ width_buckets() works ok, but will sometimes skip some buckets
entirely. You ask for 16 partitions, get 13.

● Add functions to analyze existing partitions for skew
● Become obsolete.

○ Native Partitions coming to PostgreSQL in 9.7, probably.
○ Existing work supports ranges but not range syntax.

Links
Range Partitioning extension:

PGXN: http://pgxn.org/dist/range_partitioning/
GitHub: https://github.com/moat/range_partitioning

Range Type Functions:
PGXN: http://pgxn.org/dist/range_type_functions/
GitHub: https://github.com/moat/range_type_functions

http://pgxn.org/dist/range_partitioning/
https://github.com/moat/range_partitioning
http://pgxn.org/dist/range_type_functions/
https://github.com/moat/range_type_functions

