

PostBIS A Bioinformatics Booster for PostgreSQL

Microbial Genomics and Bioinformatics Research Group Michael Schneider Renzo Kottmann Prague, 2012-10-26

Marine Microbiologie – Ecologically Important

- I million bacterial cells/cm³ ocean water
- In total 10³⁰
 - More than stars in universe
- 1/2 of the world wide oxygen production
- ▶ 1/2 of the earth biomass
- The weight of
 - > 240 billion elephants

Single Bacterial Genomes

- All heredity is encoded in the genomes of cells
- Sequencing of thousands of genomes:
 - Each ~ 5MB

Single Bacterial Annotation

Metagenomics

The Sequence Data

Single genomes

- Sequencing of thousands of genomes each:
 - 1 long sequence
 - ~ 5MB
 - ~ 5000 genes/genome

Metagenomes

- Sequencing of thousands of sample each:
 - Millions of short sequences
 - <1 KB
 - Millions of genes/ metagenome

Standard bioinformatic query

Give me all sequences which encode gene OXY1

Ecological Perspective

From where ??

R. OL

+ De Chara

Ecological Perspective

From where ??

Give me all sequences which encode gene OXY1 and were found at Helgoland roads at a depth deeper 50 m.

Data Integration

genomes metagenomes transcriptomes

marker genes proteomes latitude longitude collection date depth

Sequence Data Environmental Data

Data <u>Integration</u> + Analysis tal Data water currents temperature

Result: Relationship

The off

Data Integration: Geo-referencing

12

Megx.net: Data Portal for <u>M</u>icrobial <u>E</u>cological <u>G</u>enomi<u>X</u>

- Solely based on Open Source Software
 - Database: PostgreSQL
 - PostGIS extension (geo-spatial data)
 - Web-Server:
 - Apache
 - UMN Mapserver
 - Web-client
 - OpenLayers

Who is out there and where?

No data

(in terms of sequenced genomes, metagenomes and key genes)

Nice, nice BUT where is the problem????

NextGen Sequencing a Game-Changer

More efficient ways to store Sequence Data needed

http://www.microb3.eu

Biodiversity. Bioinformatics. Biotechnology.

- All Bioinformatics moves from flat files to NOSQL (MongoDB)
 - We want to stay with Postgreee's great features:
 - Range types
 - JSON
 - hstore
 - PostGIS
 - **Performance** (shared_buffer_cache)
 - extensibility

PostBIS

- What is biological sequence data?
- How does PostgreSQL compression work?
- How does PostgreSQL compression perform on biological sequence data?
- How does PostBIS compression work?
- How does PostBIS perform in comparison to PostgreSQL and other approaches?
- What can we do with PostBIS?
- What do we want to do with PostBIS in the future?

What is biological sequence data?

Genomic DNA

- Stores hereditary information
- Encodes information as a sequence of 4 different bases:
 - Adenine, Thymine, Cytosine, Guanine
 Example: ACGATCGACTGAC
- Alphabet size = 4, up to 15
- Lengths between few thousands and billions
- Genomic DNA can be repetitive

What is biological sequence data?

Short Sequences

- Short read DNA
 - From 50 to 10,000 bases long
- RNA
 - Similar to short read DNA
- Protein
 - Alphabet of 20 to 23!
 - At maximum thousands long

What is biological sequence data?

Alignments

- Method to find and display
 - Similarities
 - Differences
- Example:
 - Compare ACGATCGACGCAT with ACGAAAGACGA
 ACGATC GACGCAT
 ACGA AAGACG A -
- Length depends on:
 - Underlying sequences
 - Their similarity
- Long stretches of gap symbols

Lempel-Ziv PostgreSQL Variant

• Maintains a sliding window

- Finds match between
 - Prefix of look-ahead buffer
 - Substring starting in search buffer
- Encodes matches with 2 or 3-byte tokens
- No match \rightarrow Standard encoding
- Termination conditions
 - Short than 32 character
 - Compression less than 25%
 - No match within first KB

How does PostgreSQL compression perform on biological sequence data?

- Entropy = average information content per character
 - Lower bound for compression
- Natural Text?
- Genomic DNA
 - ~one third \rightarrow fair compression
- Short DNA, RNA, Protein
 - Not at all \rightarrow no compression
- Alignments
 - Often:

Down to entropy \rightarrow very good compression

Sometimes:

less

- 1. Run-Length Encoding TCGAAAAAAAGCTAG TCGr8AGCTAG
- 2. Huffman codes
- 3. Rare Symbol Swapping

Huffman codes

- Reduced alphabet
- Assign short codewords to frequent symbols

Rare Symbol Swapping

• On DNA, Redundancy of 0.25 = 12.5% possible!

Lower Limit of Redundancy = 0.000003815

- New data types:
 - DNA_SEQUENCE
 - RNA_SEQUENCE
 - AA_SEQUENCE
 - ALIGNED_DNA_SEQUENCE
 - ALIGNED_RNA_SEQUENCE
 - ALIGNED_AA_SEQUENCE
 - Type modifiers:
 - CASE_SENSITIVE / CASE_INSENSITIVE
 - FLC / IUPAC / ASCII
 - SHORT / DEFAULT / REFERENCE (only DNA)

me

me

What can we do with PostBIS?

- Sequences in database, now what!?
- Doing Bioinformatics is flat file based
 - Select subset in database
 - Export sequences to flat-file
 - Do bioinformatics with command-line tool
 - Parse output
 - Import output to database
- Use-Cases:
 - tRNAscan
 - Gene extraction

What can we do with PostBIS?

CREATE TABLE human genome (sequence dna sequence(reference), chromosome text): SELECT trna(sequence, chromosome) INTO human genes FROM human genome; SELECT substr(a.sequence, b.start pos, b.len) FROM human genome AS a **INNER JOIN** human genes AS b ON a.chromosome = b.chromosome;

Substring Performance

19

What do we want to do with PostBIS in the future?

- Reference-based compression
- Reference-based heuristic approximative full-text search
 - Compressive BLAST
- NN-searches
- FDWs for relevant file formats
- Adapt existing tools

Thank you for your attention!

Tips, Comments and Questions will be appreciated!

Please give feedback at <u>http://2012.pgconf.eu/feedback/</u>