PostBIS
A Bioinformatics Booster for PostgreSQL

Microbial Genomics and Bioinformatics Research Group

Michael Schneider
Renzo Kottmann
Prague, 2012-10-26
Marine Microbiologie – Ecologically Important

- 1 million bacterial cells/cm³ ocean water
- In total 10^{30}
 - More than stars in universe
- ½ of the world wide oxygen production
- ½ of the earth biomass
- The weight of > 240 billion elephants
Single Bacterial Genomes

- All heredity is encoded in the genomes of cells
- Sequencing of thousands of genomes:
 - Each ~ 5MB
Single Bacterial Annotation

- Each gene sequence needs analysis
 - Which sequences are similar to current one?
 - What is the function?

Gene: Oxy1
Metagenomics

From where to where??

culturable microorganisms (~1%)

not yet cultured microorganisms (~99%)

isolation, cultivation

DNA-extraction, shotgun-sequencing

DNA-extraction

sequencing

cultivation on plates

cloning

vectors carrying inserts

insertion into vectors

genomic fragments

genomes
The Sequence Data

Single genomes
- Sequencing of thousands of genomes each:
 - 1 long sequence
 - ~5MB
 - ~5000 genes/genome

Metagenomes
- Sequencing of thousands of sample each:
 - Millions of short sequences
 - <1 KB
 - Millions of genes/metagenome
Give me all sequences which encode gene OXY1
Ecological Perspective

From where ??
Give me all sequences which encode gene OXY1 and were found at Helgoland roads at a depth deeper 50 m.
Data Integration

Sequence Data + Analysis

Environmental Data

Data Integration

Result: Relationship
Data Integration: Geo-referencing

- $y =$ latitude
- $z =$ depth
- $t =$ collection date
- $x =$ longitude

Result: Relationship

Data Integration + Analysis

Sequence Data
- Environmental Data
 - water currents
 - temperature

- genomes
- transcriptomes
- metagenomes
- marker genes
- proteomes
- metagenomes
Megx.net: Data Portal for Microbial Ecological GenomiX

- Solely based on Open Source Software
 - Database: PostgreSQL
 - PostGIS extension (geo-spatial data)
 - Web-Server:
 - Apache
 - UMN Mapserver
 - Web-client
 - OpenLayers

Kottmann et al. NAR. 2010
Who is out there and where?
(in terms of sequenced genomes, metagenomes and key genes)

1. Sample: rRNA sample
 - Location Details:
 - Coordinates: 37.85 N 31.52 W
 - Date: 2001-07-01
 - Depth:
 - Habitat: unclassified
 - Interpolated: annually at this sampling site at 0 m
 - Data: depth
 - Pongoæa: more environmental data

2. Sample: Caminibacter mediatlanticus TB-2
 - Location Details: Mid-Atlantic Ridge vent
 - Coordinates: 36.23 N 33.9 W
 - Date:
 - Depth: 2300.0 m
 - Habitat: hydrothermal vent
 - Interpolated: annually at this sampling site at 0 m

Kottmann et al. NAR 2010
Nice, nice
BUT
where is the problem????
NextGen Sequencing a Game-Changer

Lincoln Stein
More efficient ways to store Sequence Data needed

- All Bioinformatics moves from flat files to NOSQL (MongoDB)
- We want to stay with PostgreSQL’s great features:
 - Range types
 - JSON
 - hstore
 - PostGIS
 - Performance (shared_buffer_cache)
 - extensibility

http://www.microb3.eu

http://twitter.com/Micro_B3
PostBIS

- What is biological sequence data?
- How does PostgreSQL compression work?
- How does PostgreSQL compression perform on biological sequence data?
- How does PostBIS compression work?
- How does PostBIS perform in comparison to PostgreSQL and other approaches?
- What can we do with PostBIS?
- What do we want to do with PostBIS in the future?
What is biological sequence data?

Genomic DNA

- Stores hereditary information
- Encodes information as a sequence of 4 different bases:
 - Adenine, Thymine, Cytosine, Guanine

 Example: ACGATCGACTGAC
- Alphabet size = 4, up to 15
- Lengths between few thousands and billions
- Genomic DNA can be repetitive
What is biological sequence data?

Short Sequences

- Short read DNA
 - From 50 to 10,000 bases long
- RNA
 - Similar to short read DNA
- Protein
 - Alphabet of 20 to 23!
 - At maximum thousands long
What is biological sequence data?

Alignments

- Method to find and display
 - Similarities
 - Differences
- Example:
 - Compare ACGATCGACGCAT with ACGAAAGACGA

 - ACGATC -- GACG
 - ACGA -- AAGACG - A -

- Length depends on:
 - Underlying sequences
 - Their similarity
- Long stretches of gap symbols
How does PostgreSQL compression work?

Lempel-Ziv PostgreSQL Variant

- Maintains a sliding window
 - Search buffer
 - Look-ahead buffer

- Finds match between
 - Prefix of look-ahead buffer
 - Substring starting in search buffer

- Encodes matches with 2 or 3-byte tokens

- No match → Standard encoding

- Termination conditions
 - Short than 32 character
 - Compression less than 25%
 - No match within first KB
How does PostgreSQL compression perform on biological sequence data?

- **Entropy** = average information content per character
 - Lower bound for compression
- **Natural Text?** ❑
- **Genomic DNA**
 - ~one third → fair compression
- **Short DNA, RNA, Protein**
 - Not at all → no compression
- **Alignments**
 - Often:
 - Down to entropy → very good compression
 - Sometimes:
 - less
How does PostBIS compression work?

1. Run-Length Encoding
 TCGAAAAAAAAAGCTAG
 TCGr8AGCTAG

2. Huffman codes

3. Rare Symbol Swapping
How does PostBIS compression work?

Huffman codes

- Reduced alphabet
- Assign short codewords to frequent symbols

Diagram:

- ACGT
 - T: 0.374
 - A: 0.368
 - G: 0.131
 - C: 0.127

- AGC: 0.626
 - G: 0.258
 - C: 0.127
How does PostBIS compression work?

Rare Symbol Swapping

- On DNA, Redundancy of 0.25 = 12.5% possible!
How does PostBIS compression work?

Rare Symbol Swapping

- Lower Limit of Redundancy = 0.000003815
How does PostBIS compression work?

• New data types:
 • DNA_SEQUENCE
 • RNA_SEQUENCE
 • AA_SEQUENCE
 • ALIGNED_DNA_SEQUENCE
 • ALIGNED_RNA_SEQUENCE
 • ALIGNED_AA_SEQUENCE

• Type modifiers:
 – CASE_SENSITIVE / CASE_INSENSITIVE
 – FLC / IUPAC / ASCII
 – SHORT / DEFAULT / REFERENCE (only DNA)
How does PostBIS perform in comparison to PostgreSQL and other approaches?
How does PostBIS perform in comparison to PostgreSQL and other approaches?
How does PostBIS perform in comparison to PostgreSQL and other approaches?
How does PostBIS perform in comparison to PostgreSQL and other approaches?
What can we do with PostBIS?

- Sequences in database, now what!?
- Doing Bioinformatics is flat file based
 - Select subset in database
 - Export sequences to flat-file
 - Do bioinformatics with command-line tool
 - Parse output
 - Import output to database
- Use-Cases:
 - tRNAscan
 - Gene extraction
What can we do with PostBIS?

CREATE TABLE human_genome (
 sequence dna_sequence(reference),
 chromosome text
);

SELECT trna(sequence, chromosome)
 INTO human_genes
 FROM human_genome;

SELECT substr(a.sequence, b.start_pos, b.len)
FROM

 human_genome AS a
INNER JOIN
 human_genes AS b
ON a.chromosome = b.chromosome;
Substring Performance

- PG External
- PG Extended
- PostBIS

![Graph showing extraction time against substring start position]
What do we want to do with PostBIS in the future?

- Reference-based compression
- Reference-based heuristic approximative full-text search
 - Compressive BLAST
- NN-searches
- FDWs for relevant file formats
- Adapt existing tools
Thank you for your attention!

Tips, Comments and Questions will be appreciated!

Please give feedback at http://2012.pgconf.eu/feedback/