
© 2014 by Markus Winand

Bitmap Index Only Scan

PgCon 2014

Disclaimer: everything “as far as Markus Winand” knows
—which is not a lot in this respect.

Sunday, May 25, 2014



The Problem: Either Or
• Although it is called index-only scan it might still need to fetch (some) rows 

from the heap (depending on visibility).

• The optimizer might opt for an Bitmap Scan if it seems like IOS would still 
trigger a lot of random IO to the heap.

• Bitmap Scans generally don’t take advantage of the visibility map.

➡Even if Bitmap Scan is better than a Index Only Scan, it will still fetch some 
tuples from heap although it already fetched the required data from the 
index before (and forgot about that in the meanwhile).

• Right now it is binary:

➡Either avoid reading all-visible pages (IOS) or more efficient IO (Bitmap)

• Does it really need to be that?

Sunday, May 25, 2014



Bitmap Scans: Data Flow
• Bitmap Index Scan puts pointers into bitmap
• Bitmap is passed to Bitmap Heap Scan
• Bitmap Heap Scan gets tuples and sends them upstream.

Upstream Node

Bitmap Heap Scan

Bitmap Index Scan

Bitmap

Tuples

Just Pointers

Just Pointers

Doesn’t have Index Tuples.
Must also fetch “all-visible” pages.

Sunday, May 25, 2014



Idea: Bitmap Index Only Scan
• In case the query would qualify for an IOS, but the planner opts for a Bitmap 

Scan anyway, why don’t we just check the visibility during Bitmap Index Scan 
and instead of taking note of the heap pointer in the bitmap, just emit the 
tuple upstream if all-visible?
• Runtime savings:

• IO during Bitmap Heap Scan
• Right-Away emitted tuples don’t need space in the Bitmap
• Rows are emitted earlier (not a strict two-phase execution anymore)

• Runtime cost:
• Check the visibility map during Bitmap Index Only Scan

• Limitations (just wild guess from my side)
• I guess it makes only sense if there is only one Bitmap Index Scan for 

the Bitmap Heap Scan — otherwise we would need to store the actual 
data in the bitmap.

Sunday, May 25, 2014



Bitmap Scans: Proposed Data Flow
• Old path if not all-visible.
• “Shortcut” if all-visible.

Upstream Node

Bitmap Heap Scan

Bitmap Index Only Scan

Bitmap

Tuples

Just Pointers

if not all-visible if all-visible

Maybe a new 
“consolidation node”

Maybe “through” 
BHS node

Sunday, May 25, 2014



Bitmap Index Only Scan: Challenges

• Challenges
• What if the lossy bitmap kicks in?

• Once a row has been emitted directly from the Bitmap Index Scan, it 
seems to be impossible to switch to the space preserving “lossy” mode 
(Recheck during Bitmap Heap Scan).
• Would not be a problem if visibility map isn't cleared during Bitmap 

Scan (all the tuples in the same heap page would be directly emitted 
anyways).
• I suspect Visibility Map can be cleared during Bitmap Scan.

• I don’t think that it could be made that the Recheck filters the already 
emitted rows without increasing memory footprint and way more 
implementation effort.

➡That could be a show stopper 
•

Sunday, May 25, 2014



Bitmap Index Only Scan: Planning
• Planning

• Special costing might not be needed if the overhead of checking the 
visibility map is negligible (I just don’t know if it is!)
• If yes, just do if possible:

Covering Index AND only one Bitmap Index Scan beneath the Bitmap 
Heap Scan

• Even if the visibility map mostly cleared, it might make sense to use 
Bitmap Scan over Index Scan:
• If the visibility map is mostly cleared, the Bitmap Index Only Scan 

would not build up large bitmap (but emit most rows right way, basically 
behaving like Index Only Scan (other than not being order preserving 
there is no drawback to the Bitmap Scan plan in that case!)

• it might be possible to do the planning that without actually increasing the 
the search space (no more plan permutations — just “a few ifs”).

Sunday, May 25, 2014


