PL/Profiler
Presented by Jan Wieck, OpenSCG Inc.

OpenSCG G BIGSQL

What is Profiling?

‘In software engineering, profiling ("program pro-
filing“,”software profiling“) is a form of dynamic
program analysis that measures, for example, the
space (memory) or time complexity of a program, the
usage of particular instructions, or the frequency and
duration of function calls. Most commonly, profiling
information serves to aid program optimization.”

— Wikipedia

OpenSCG & BIGSQL

Profiling PostgreSQL

+ PostgreSQL can collect statistics and produce
log information that can be used by tools to
produce profiles.

- System views based on the statistics collector,
like pg_stat_user_tables, show counters per
table about the number of sequential scans and
index scans, how many tuples have been looked
up by scan type, how large the tables are etc.

+ The extension pg_stat_statements collects
execution statistics for normalized queries.

OpenSCG ¢ SQL

Profiling PostgreSQL

+ 3rd party products like pgbadger can create
extensive reports about which queries consume
most of the time and their frequency, tables,
indexes and much more.

- Unfortunately pgbadger requires extremely
aggressive query logging to be enabled in the
postgresql.conf file
(log_statement_min_duration=0), which by itself
can produce more performance problems when
you already have enough.

OpenSCG & BIGSQL

Profiling PostgreSQL

+ On a side note: very few users perform any
profiling before they have a really bad problem in
production.

+ This means that once we have a problem, there
is no baseline available to compare the current
behavior to. How do you tell what is “out of
whack” when you don’t know what used to be
“normal”?

OpenSCG & BIGSQL

Profiling PostgreSQL

+ All of this may work to find and tune problematic
queries.

+ The amount of logging often prohibits doing this
in production.

OpenSCG EBIGSQL

How PL/pgSQL works

- PL/pgSQL is like every other “loadable,
procedural language.”

* When a PL function is executed, the fmgr loads
the language handler and calls it.

+ The language handler then interprets the
contens of the pg_proc entry for the function
(proargtypes, prorettype, prosrc).

OpenSCG & BIGSQL

How PL/pgSQL works

« On the first call of a function in a session, the call
handler will “compile” a function statement tree.

+ SQL queries in the function are just kept as a
string at this point.

+ What might look to you like an expression is
actually a SELECT query:

my_variable := some_parameter * 100;

OpenSCG & BIGSQL

How PL/pgSQL works

« The PL/pgSQL statement tree is very similar to a
PostgreSQL parse or execution tree.

» The call handler then executes that statement
tree.

« On the first execution of a statement node, that
has an SQL query in it, that query is prepared via
SPI.

+ The prepared plan is then executed for every
invocation of that statement in the current
session.

OpenSCG & BIGSQL

An Example using PL/pgSQL

* The following Example is based on the
benchmarksql schema (TPC-C style)

* Like the pgbench schema (TPC-B style), the
TPC-C has a HISTORY table without any
indexes.

+ The main difference is that it has more columns
and that the CUSTOMER s identified with a
3-column key.

+ If we sum up the history of a customer by
selecting directly from the HISTORY table, the
query will be logged and accounted for in
pg_stat_statements.

OpenSCG G SQL

et there be a PL/pgSQL function

CREATE FUNCTION get_customer_balance(p_w_id integer,
p_d id integer,
p_c_id integer)
RETURNS numeric
AS $$
DECLARE
v_balance numeric;
BEGIN
SELECT INTO v_balance sum(h_amount)
FROM bmsgl_history
WHERE h_w_id = p_w_id
AND h_d_id = p_d_id
AND h_c_id = p_c_id;
RETURN v_balance;
END;
$$ LANGUAGE plpgsqgl;

OpenSCG & BIGSQL

And let there be a view using that function

CREATE OR REPLACE VIEW bmsqgl_problem AS
SELECT c_w_id, c_d_id, c_id,
c_balance,
get_customer_balance(c_w_id, c_d_id, c_id)
AS sum_history_amount
FROM bmsgl_customer;

OpenSCG & BIGSQL

The Problem

* It is obvious that as the history table is growing
over time, the performance of that view will
degrade.

+ Since the history table does not have an index
covering h_w_id, h_d_id, h_c_id, we will see
sequential scans on bmsql_history in
pg_stat_user tables.

- But how do we find out where those sequential
scans are coming from?

OpenSCG & BIGSQL

What is captured in the logs

Application

I
libpg sends query
SELECT ... FROMI bmsgl_problem ...

This query is logged
— =

OpenSCG

BIGSQL

What isn’t captured in logs

Application

I
libpg sends query

SELECT ... FROMI bmsgl_problem ...

‘ This query is logged
——

PostgreSQL

view uses function
get_customer_balance()!

SPI_exec()

ISELECT sum(h_amount) ...

This query
is not logged

OpenSCG

BIGSQL

We can see them somewhere

® pg_stat_statements.track = all

Like with application queries you will see a
“normalized” version.

It is no fun to hunt down that query in thousands
of lines of PL code.

auto_explain.log _nested_statements = on

+ If you have the disk space for the log and can
afford to lose 70% performance.

OpenSCG & BIGSQL

The Problem

* You will never see the query
SELECT sum (h_amount) FROM bmsgl_history ...

in the PostgreSQL logs or pg_stat_statements.
+ This example is trivial and one could easily find

the problem by looking at the view and function.
* In the real world things aren’t that simple.

OpenSCG & BIGSQL

In the real world ...

+ Customer database has 1,800 tables with 13,000
indexes used by 600 PL/pgSQL functions with
together over 100,000 lines of code.

+ The application is just calling a PL/pgSQL
function, which can take anywhere from
milliseconds to hours.

* No sequential scans happened.

* Our DBAs had been working on this problem for
quite a while.

OpenSCG & BIGSQL

How PL profiler works

* plprofiler consists of two things.

+ The plprofiler extension loaded into the backend.
 The plprofiler command line utility (Python).

* The extension uses the debug instrumentation
hooks, added to PostgreSQL in 2006 (8.2).

* The hooks invoke callbacks whenever a function
is entered/exited and whenever processing of a
PL statement (node) starts/ends.

OpenSCG & BIGSQL

How PL profiler works

 Using these callbacks the plprofiler extension
collects three different statistics:

1. Per call stack (call graph) the number of calls,
cumulative time spent and cumulative time spent
in all children.

2. Per function the number of calls, the cumulative
time spent in all calls to this function and the
longest time spent in a single call to this function.

3. Per statement the same as per function.

+ The command line utility is using the extension to
collect data and subsequently turn it into a
detailed performance profile.

OpenSCG G SQL

What is a call graph?

+ A call graph is the current stack levels.
- Like a backtrace in a debugger (gdb bt).

* It shows where the program is executing and
how it got there.

OpenSCG & BIGSQL

What to do with call graphs?

+ Call graphs can be turned into something really
cool. FlameGraphs!
* http://www.brendangregg.com/flamegraphs.html
* This is the first FlameGraph produced from that
customer problem.
i Rl Re nowts T o |

o et new_sequencell oid=3584385247

OpenSCG & BIGSQL

Sorry for the blur

+ Sorry for the blur, but | could not show you the
source code anyway. This was to illustrate how
things will look in the real world.

« For a simple example, let us expand on the
previous code of get_customer_balance().

* We create another function that returns the total
sum of the balances of all customers.

OpenSCG & BIGSQL

Another function

CREATE OR REPLACE FUNCTION total_customer_ balance()
RETURNS numeric
AS $$
DECLARE
v_balance numeric = 0;
v_cust record;
BEGIN
FOR v_cust IN SELECT c_w_id, c_d_id, c_id
FROM bmsgl_customer
LOOP
v_balance = v_balance +
get_customer_balance(v_cust.c_w_id,
v_cust.c_d id,
v_cust.c_id);
END LOOP;
RETURN v_balance;
END;
$$ LANGUAGE plpgsqgl;

OpenSCG & BIGSQL

Let’'s generate a report

+ With that in place we execute

$ plprofiler run -d bmsgll \
--command ”“select total_customer_balance()” \
--output testl.html

 This will connect to the database vnsq11, activate
the plprofiler extension, run the given query and
then produce the test1.ntm1 report.

OpenSCG & BIGSQL

test1.html

PL Profiler Report for current - Mozilla Firefox (on centos7 1-training)

/_:' PL Profiler Report for cur... % ‘.\‘i‘

& (0 files//fnome/vagrant/postgres/benchmarksql/run/test1.F c HQ Search | w a8 3+ @

PL Profiler Report for current

PL/pgSQL Call Graph
PL Profiler Report for current

public.total customer balance() oid=17617

List of functions detailed below

* public.get customer balance() oid=17616
« public.total customer balance() oid=17617

All 2 functions (by self_time)
Function public.get customer_balance() 0id=17616 (show)

OpenSCG & BIGSQL

test1.html

* By default the report contains details for the top
10 functions by “self time”.

* This can be overridden by command line options.

 The details can be viewed by clicking on the
(show) link of one of the functions.

OpenSCG & BIGSQL

test1.html

public.get_customer_balance (p_w_id integer,
p_d_id integer,

p_c_id integer)
RETURNS numeric
Linejexec_counk total_time longest_time Source Code
0] 150,000[3,198, 739 us (100, 00%) 2,166 ps[-= Function Totals
1] 0 ps (0.00%) 0 s
E 0 0 ps__ (D.00%) 0 ps[DECLARE
3 0 0 ps (0.00%) 0 s v_balance numeric;
4 0 0 ps__ (D.00%) 0 ps[BEGIN
E 150, 0003, 069,648 s [95.96%) 1,292 ps SELECT INTO v_balance sum(h_amount)
E 0 ps (0.06%) 0 ps| FROM bmsgl_history
7 0 0 ps (0.00%) 0 s WHERE h_w_id = p_w_id AND h_d_id = p_d_id A
E 150,008 14,378 ps (0.45%) 47 ps RETURN v_balance;
E 5 0 ps (0.00%) 0 Ps[END:
10| 0 0 ps (0.06%) 0 s

OpenSCG & BIGSQL

Other functions of the plprofiler

 The plprofiler can not only execute a single
function. Instead of using the - -commana Option, the
--fi1e option can be used to execute an entire file
full of SQL statements.

+ On top of that, version 3 added the ability to
profile an entire application.

OpenSCG & BIGSQL

Profiling the whole application

+ Add plprofiler to shared_preload_libraries.

* Use the plprofiler nonitor command to capture
profiling data into shared memory.

* Use the plprofiler command line utility to
generate a report.

- Save the collected data into a permanent set that
can later generate a report and/or be exported
and imported into another system.

OpenSCG & BIGSQL

How to get it running quickly?

+ BigSQL (http://bigsql.org) has included plprofiler
version 3 in the binary distribution.

* The BigSQL Manager (BAM) has a graphical
user interface for plprofiler.

OpenSCG & BIGSQL

plprofiler in BAM

» BigSQL Manager Il

Component Details

&
Overview Activity ~ Configwe Databases Security | Performance | Release Notes

B @
pg96u. 9s.1-1 @ Log Tailer Q plProfiler @ pgBadger

a

= Uptime 2hours, 54 minutes.
Data Dir @ Log Dir@
Data size 7311k
Auto Start 0
Refresh Interval (sec) 5 j

RUNNING
ON PORT 5432
[o

Project Details -

OpenSCG & BIGSQL

plprofiler in BAM

» BigSQL Manager Il

plProfiler GUI (beta)

Hos
B

DB U
R/

DB P
L

DB N

DBP

port Titi

* Required Field

]

Gopyright © 2016 BigSQL. Al rights reserved. Version 1.6.3

OpenSCG & BIGSQL

plprofiler in BAM

¥ BigSQL Manager Il

plProfiler GUI (beta)

localhost
B
postgres
a
®
postgres
5432

SELEGT flnonacg(10);

Fibonacci Test

PL/Profiler report for pipgsql fiboncacei function

Generate

* Required Field

Copyright © 2016 BigSQL. Al rights reserved.

Glick Here to See the Report in New Tab

PL/Profiler report for plpgsql fiboncacci function

PL/pgSQL Call Graph

Fibonacci Test

public.fibonacei() oid=16454

List of functions detailed below
«» public.fibonacci 6454
All 1 functions (by self_time)

Eunctinn nuhlie fihanarcill aid—18AEA (chaun

Version 1.6.3

OpenSCG

TBIGSQL

That is it (for now)

* Questions?

OpenSCG G BIGSQL

SLIDE TITLE

+ SLIDE CONTENT

OpenSCG G BIGSQL

