
1

postgres

postmaster

walwriterbgwriter

stats collector logger

archiver

autovacuum
launcher

autovacuum
worker

walsender

psql libpq

Application JDBC postgres

backends

fork()

SQL

background processes

connect

postmaster
bgwriter

stats collector archiver

background processes

walreceiver

special backend

connect

fork()

WAL

Primary

Standby

The process architecture of Synch Rep

startup



2

Primary

Standby

The flow of WAL in Synch Rep

pg_xlog archivewal buffers

postgres

walsender archiver

walreceiver

pg_xlog archive

archiver

startup pg_standby flow of WAL

replication path

This page contains 
old information. The 
latest is in P6,7.



3

The sequence of Synch Rep (startup)

start

start

fork()

signal

fork()
connect

fork()

fork()

signal
replication message

type ‘R’

‘replication’ database

signal

Identify the backend
as walsender

Work as
normal backend

After here, work
as walsender

reply (timeline, lsn)
type ‘l’

Replication

Primary

postgrespostmaster walsender postmasterstartuparchiverwalreceiver pg_standby

Standby

archive
system()

Read recovery.conf

pg_xlog

return

read

Redo the WAL before replication
starting position by using
pg_standby from archive.

If reaching safe
starting point,

User can configure whether
archiving during recovery.

Switch the
WAL file system()

archive

Switched WAL is copied by admin
or clusterware...etc. But if archive
is shared, primary archiver copies
it automatically.

read
return

After redoing the switched WAL,
standby doesn’t use pg_standby.
Startup process waits for next
WAL available.



4

The sequence of Synch Rep (replication)

connect

fork()

transaction

request signal

flush

reply signal

write

Wait for replication

wal message

(wal, lsn)

type ‘w’

reply (lsn)

type ‘r’

‘success’

Wait for next WAL
record available

pg_xlog

pg_xlog

archive

read

REDO

RequestXLogSend()

XLogSend()

WaitXLogSend()

WalSenderParseInput()

PQpeekXLog()

PQputXLogRecPtr()

Primary Standby

postgrespostmaster walsender postmasterstartuparchiverwalreceiver pg_standby

read

Replication

write

read

write REDO

REDO

archive

If WAL file fills, walreceiver creates .ready file,
then archiver archives it. Remaining WAL files
in pg_xlog will be deleted by startup process
when creating restart point.



5

The sequence of Synch Rep (timeout)

connect

fork()

transaction

request signal

flush

Wait for replication

wal message

(wal, lsn)pg_xlog

timeout signal

‘success’

Timeout

Under discussion
about reaction to
timeout

FATAL
error

RESET

Shutdown

Primary Standby

postgrespostmaster walsender postmasterstartuparchiverwalreceiver pg_standby



6

Primary

Standby

The flow of WAL in Synch Rep (sharing archive)

pg_xlogwal buffers

postgres

walsender archiver

walreceiver

pg_xlog

archive

startup pg_standby flow of WAL

replication path via streaming

replication path via archive
Read the WAL after
the replication 
starting position.

Read the WAL before
the replication 
starting position.

WAL streaming



7

Primary

Standby

The flow of WAL in Synch Rep (not sharing archive)

pg_xlog archivewal buffers

postgres

walsender archiver

walreceiver

pg_xlog archive

archiver

startup pg_standby flow of WAL

replication path via streaming

replication path via archive
Read the WAL after
the replication 
starting position.

Read the WAL before
the replication 
starting position.

WAL streaming

Operation by admin or 
clusterware...etc

Something other than 
postgres (admin, clusterware
like Heartbeat ..etc)User can configure whether 

archiving during recovery.
GUC: archive_mode


