The process architecture of Synch Rep
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The flow of WAL in Synch Rep
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The sequence of Synch Rep (startup)

Primary Standby
[ postmaster ] [ postgres ] l walsender l [walreceiver] [ archiver ] [pg_standby] l startup l l postmaster l
start
. Read recovery.conf
Redo the WAL before replication start
starting position by using —
pg_standby from archive. P fork()
system()
archive
pg_xlog
< < return If reaching safe
starting point,
read -
‘replication’ database d signal
fork()
connect <
fork()
type ‘R’ User can configure whether
archiving during recovery.
Work as L
normal backend replication message
. signal
signal
fork()
After here, work <
Identify the backend Switch th as walsender
as walsender LIS Wis
WAL file system()
type ‘I’
reply (timeline, Isn)
archive
After redoing the switched WAL,
m > standby doesn’t use pg_standby.
\t’/ : Startup process waits for next
. i . X WAL available.
Switched WAL is copied b)_/ admlp Replication < < return
or clusterware...etc. But if archive >
is shared, primary archiver copies read >
it automatically.
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The sequence of Synch Rep (replication)

Primary Standby
[ postmaster ] [ postgres ] l walsender l [Walreceiver] [ archiver ] [pg_standby] l postmaster l
connect
_— >
fork()
> XLogSend() i
transaction Wait for next WAL
> record available
request signal type ‘w’
""""""""""""""""""""" T » i wal message
: RequestXLogSend() : -~ : :
l pg_xlog >
WtXL ..... S ..... d flush
| aitdogsend) - o pg_xlog
I ype T write
Wait for replication reply (Isn) i read
reply signal s, £
7 PQputXLogRecPtr()
‘suc‘cess' REDO
write
Replication | read
write REDO
read
REDO
archive
If WAL file fills, walreceiver creates .ready file,
then archiver archives it. Remaining WAL files —p -
in pg_xlog will be deleted by startup process archive
when creating restart point.
\ \l/ \l/ \




Primary

The sequence of Synch Rep (timeout)
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The flow of WAL in Synch Rep (sharing archive)
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The flow of WAL in Synch Rep (not sharing archive)
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User can configure whether
archiving during recovery.
GUC: archive_mode
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Read the WAL after
the replication
starting position.
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s clusterware...etc

Read the WAL before
the replication
starting position.
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like Heartbeat ..etc)

TITLIE
replication path via archive

TITLIE
replication path via streaming

—
flow of WAL



