The process architecture of Synch Rep

Primary
T T T ety I
1 backends : 1 background processes
| |
|
I I .) .
psgl [libpq | postgres] : 1| bgwriter [walwriter]
SQL | : = :
, : | |stats collector [logger]
Application| JDBC postgres] I ’:
| . archiver
__________ 1 R \
o 1, §
connect i [autovacuum [autovacuum
¢ ¢ : launcher) worker
ostmaster S
p I o o o o o o e e e e o e e e e o
i special backend :
|
walsender] :
} A |
\ WAL
Standby
connect
___________________ -
1 backgrpund processes
A\ 4

walreceiver [bgwriter]

[postmaster } """""" >

|

I \

:[stats collector [archiver]
I J

I

I

The flow of WAL in Synch Rep

Primary
[p,{g\‘]
wal buffers pg_xlog archive
rWalsender] [archiver]
Standby

)

wadreceiver]

startup

archiver

*
L4

' archive

&
L4
R4

pgistand by

This page contains
old information. The
latest is in P6,7.

replication path

—
flow of WAL

The sequence of Synch Rep (startup)

Primary Standby
[postmaster] [postgres] l walsender l [walreceiver] [archiver] [pg_standby] l startup l l postmaster l
start
. Read recovery.conf
Redo the WAL before replication start
starting position by using —
pg_standby from archive. P fork()
system()
archive
pg_xlog
< < return If reaching safe
starting point,
read -
‘replication’ database d signal
fork()
connect <
fork()
type ‘R’ User can configure whether
archiving during recovery.
Work as L
normal backend replication message
. signal
signal
fork()
After here, work <
Identify the backend Switch th as walsender
as walsender LIS Wis
WAL file system()
type ‘I’
reply (timeline, Isn)
archive
After redoing the switched WAL,
m > standby doesn’t use pg_standby.
\t’/ : Startup process waits for next
. i . X WAL available.
Switched WAL is copied b)_/ admlp Replication < < return
or clusterware...etc. But if archive >
is shared, primary archiver copies read >
it automatically.
A\ v Vv \ \%

The sequence of Synch Rep (replication)

Primary Standby
[postmaster] [postgres] l walsender l [Walreceiver] [archiver] [pg_standby] l postmaster l
connect
_— >
fork()
> XLogSend() i
transaction Wait for next WAL
> record available
request signal type ‘w’
""""""""""""""""""""" T » i wal message
: RequestXLogSend() : -~ : :
l pg_xlog >
WtXL S d flush
| aitdogsend) - o pg_xlog
I ype T write
Wait for replication reply (Isn) i read
reply signal s, £
7 PQputXLogRecPtr()
‘suc‘cess' REDO
write
Replication | read
write REDO
read
REDO
archive
If WAL file fills, walreceiver creates .ready file,
then archiver archives it. Remaining WAL files —p -
in pg_xlog will be deleted by startup process archive
when creating restart point.
\ \l/ \l/ \

Primary

The sequence of Synch Rep (timeout)

[postmaster]

[postgres]

l walsender l

Standby

connect
—

fork()

transaction

Wait for replication

‘success’

<

[walreceiver]

[archiver]

[pg_standby]

l startup l

l postmaster l

<

request signal
> wal message
pg_xlog (wal, Isn) >
flush
—>
Timeout> timeout signal
FATAL RESET
error >
Under discussion
about reaction to h
timeout AT
\% \%

The flow of WAL in Synch Rep (sharing archive)

Primary

‘walsender] [archiv'éN\

O..
v

[WAL streaming 1

Standby

¢uinngnnnnnnnnaln

[\\N@I receiver]

Read the WAL after
the replication
starting position.

.0

pg_'stand by

startup

Read the WAL before
the replication
starting position.

TITLIE
replication path via archive

TITLIE
replication path via streaming

—
flow of WAL

The flow of WAL in Synch Rep (not sharing archive)

Primary

-walsender archiver

User can configure whether
archiving during recovery.
GUC: archive_mode

[WAL streaming 1

Standby {

¢uinngnnnnnnnnaln

ireceiver | [archiver |
receilver arcniver
&l i

Read the WAL after
the replication
starting position.

*
wal buffe‘rs Operation by admin or
s clusterware...etc

Read the WAL before
the replication
starting position.

Something other than
postgres (admin, clusterware
like Heartbeat ..etc)

TITLIE
replication path via archive

TITLIE
replication path via streaming

—
flow of WAL

