
Things You Didn't Know PostgreSQL Could Do!

To say there are many features in PostgreSQL is to make a gross understatement. Which features can help
you save time with your project? Which ones can help boost your application performance? Which ones
are just cool to play with?

Combine multiple indexes

SELECT *
 FROM tab
 WHERE a = ?
 AND b = ?

A btree index on <a> and a btree index on can be
combined using a bitmap scan.

This isn't as efficient as an index on <a,b> or <b,a> but...

Combine multiple indexes

SELECT *
 FROM tab
 WHERE a < ?
 AND b < ?

In this case no two column btree index would suffice.

But this still requires scanning two large indexes and
combining the results. Postgres will often choose not to do
so since the second index may be creating more work than
it's saving.

When is one index better than two?

SELECT *
 FROM tab
 WHERE a > 10
 AND b < 0

An index like:
CREATE INDEX magic ON tab (a) WHERE b < 0

Partial indexes are like having a hidden second index key. It's
like two indexes in one. It's like having a second index on
without using any storage space at all.

When are many indexes better than one?

SELECT *
 FROM tickets
 WHERE status = ?
 AND last_update > now() - '5 days'

CREATE INDEX disappointing ON tickets (status, last_update)

status is probably too low cardinality to be very helpful. And it
dramatically increases the size of the index for not much gain
in selectivity.

SELECT *
 FROM tickets
 WHERE status = ?
 AND last_update > now() - '5 days'

CREATE INDEX neat_1 ON tickets (last_update) WHERE status = 'NEW'
CREATE INDEX neat_2 ON tickets (last_update) WHERE status = 'ASSIGNED'
CREATE INDEX neat_3 ON tickets (last_update) WHERE status = 'PENDING'
CREATE INDEX neat_4 ON tickets (last_update) WHERE status = 'RESOLVED'

This takes more or less the same space as a single index on
"last_update" and is effectively like having a bitmap index on
status for free.

When are many indexes better than one?

Postgres doesn't have pivot tables
does it?

An often asked-for feature, they would let you
do the equivalent of GROUP BY but get
separate columns for each grouping key.

Postgres can't change the "shape" of the result
based on the data so the set of columns has to
be fixed.

But Postgres does have complex types....
Arrays provide a handy escape hatch:

What we want to do:
SELECT sum(revenue)
 FROM revenue_table
 GROUP BY month, country
 PIVOT BY country

 US CA UK

January 0 0 0

February 0 0 0

March 0 0 0

April 0 0 0

Postgres doesn't have pivot tables
does it?

Postgres doesn't have pivot tables
does it?

SELECT month,
 array_agg(ROW(country,rev))
 AS revenue_list
 FROM (
 SELECT month,country,
 sum(revenue) as rev
 FROM revenue_table
 GROUP BY month, country
) AS row
 GROUP BY month order

Postgres doesn't have pivot tables
does it?

 revenue_list

January {"(CA,0)","(US,0)","(UK,0)"}

February {"(CA,0)","(US,0)","(UK,0)"}

March {"(CA,0)","(US,0)","(UK,0)"}

April {"(CA,0)","(US,0)","(UK,0)"}

What we get isn't as pretty but from a client-
side language which supports composite types
it can actually be easier to work with than
separate columns:

It's actually simpler and resulting query is
much shorter using array_agg() and
array_to_string() instead.

WITH RECURSIVE
 x(i) AS (VALUES(0) UNION ALL SELECT i + 1 FROM x WHERE i < 101),
 Z(Ix, Iy, Cx, Cy, X, Y, I) AS (
 SELECT Ix, Iy, X::float, Y::float, X::float, Y::float, 0
 FROM
 (SELECT -2.2 + 0.031 * i, i FROM x) AS xgen(x,ix)
 CROSS JOIN
 (SELECT -1.5 + 0.031 * i, i FROM x) AS ygen(y,iy)
 UNION ALL
 SELECT Ix, Iy, Cx, Cy, X * X - Y * Y + Cx AS X, Y * X * 2 + Cy, I + 1
 FROM Z
 WHERE X * X + Y * Y < 16.0
 AND I < 27
),
Zt (Ix, Iy, I) AS (
 SELECT Ix, Iy, MAX(I) AS I
 FROM Z
 GROUP BY Iy, Ix
 ORDER BY Iy, Ix
)
SELECT array_to_string(
 array_agg(
 SUBSTRING(
 ' .,,,-----++++%%%%@@@@#### ',
 GREATEST(I,1),
 1
)
),''
)
FROM Zt
GROUP BY Iy
ORDER BY Iy;

This query was translated from MS-
SQL. The original used pivot tables.

This query was translated from MS-
SQL. The original used pivot tables.

 mandelbrot

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,--%+----,,,,,,,,,,,,,,,,,,.................
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,----+---@-,,,,,,,,,,,,,,,,,,................
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----+%+----,,,,,,,,,,,,,,,,,,...............
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----%% %+----,,,,,,,,,,,,,,,,,,,.............
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,---% #%@ #%+%---,,,,,,,,,,,,,,,,,,,............
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,------+ +----,,,,,,,,,,,,,,,,,,,...........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----------% %------,,,,,,,,,,,,,,,,,,..........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,----@-------++# %+------------,,,,,,,,,,,,..........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,---%#%+--+ @@ @ + %-----++-,,,,,,,,,,,,.........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----+ % %+++#%+%%-,,,,,,,,,,,,........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,------+ @ +--,,,,,,,,,,,,........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-------+++% %---,,,,,,,,,,,,,.......
 ..,,,,,,,,,,,,,,,,,,,,,,----,--------------- +----,,,,,,,,,,,,,......
 .,,,,,,,,,,,,,,,,,,,,,,--+------------------+@ +----,,,,,,,,,,,,......
 ,,,,,,,,,,,,,,,,,,,,,,--%%------ +--------+ @@-,,,,,,,,,,,,......
 ,,,,,,,,,,,,,,,,,,,,,-----+ %+++# +%-----+# %---,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,,,------+# # @%+++% ++--,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,------+++@ %%@ %-,,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,----%---+@ @ --,,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,--------+%+++@ ---,,,,,,,,,,,,,,,....
 ,,,,,------------+-++@ ---,,,,,,,,,,,,,,,,....
 %+----,,,,,,,,,,,,,,,,....
 ,,,,,------------+-++@ ---,,,,,,,,,,,,,,,,....
 ,,,,,,,,,,,,--------+%+++@ ---,,,,,,,,,,,,,,,....
 ,,,,,,,,,,,,,,,,----%---+@ @ --,,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,------+++@ %%@ %-,,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,,,------+# # @%+++% ++--,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,,,,-----+ %+++# +%-----+# %---,,,,,,,,,,,,,.....
 ,,,,,,,,,,,,,,,,,,,,,,--%%------ +--------+ @@-,,,,,,,,,,,,......
 .,,,,,,,,,,,,,,,,,,,,,,--+------------------+@ +----,,,,,,,,,,,,......
 ..,,,,,,,,,,,,,,,,,,,,,,----,--------------- +----,,,,,,,,,,,,,......
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-------+++% %---,,,,,,,,,,,,,.......
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,------+ @ +--,,,,,,,,,,,,........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----+ % %+++#%+%%-,,,,,,,,,,,,........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,---%#%+--+ @@ @ + %-----++-,,,,,,,,,,,,.........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,----@-------++# %+------------,,,,,,,,,,,,..........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----------% %------,,,,,,,,,,,,,,,,,,..........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,------+ +----,,,,,,,,,,,,,,,,,,,...........
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,---% #%@ #%+%---,,,,,,,,,,,,,,,,,,,............
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----%% %+----,,,,,,,,,,,,,,,,,,,.............
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-----+%+----,,,,,,,,,,,,,,,,,,...............

(44 rows)

Finding the median

A perennial question for smarties, Postgres
doesn't have a great way to find the median but
did you know the OFFSET and LIMIT clauses
can take arbitrary sub expressions including
subqueries?

SELECT *
 FROM tab
 ORDER BY height
 OFFSET (select count(*) from tab)/2
 LIMIT 1

Top-k queries and pagination
Similarly if you want to retrieve the top k results or results 11-20 for a page, let
the database know it doesn't have to sort the entire result set:

SELECT *
 FROM tab
 WHERE ...
 ORDER BY k1,k2,k3
 OFFSET 11
 LIMIT 10

The database optimizes this and keeps only the top 20 results in memory at all
times. This means it won't have to spill to disk to perform a batch disk sort even
if the result set is huge.

Psql features you won't know how
you lived without
postgres=# select * from pg_views limit 5;

 schemaname | viewname | viewowner |

------------+-----------+-----------+---

 pg_catalog | pg_roles | stark | SELECT pg_authid.rolname, pg_authid.rolsup

 pg_catalog | pg_shadow | stark | SELECT pg_authid.rolname AS usename, pg_au

 pg_catalog | pg_group | stark | SELECT pg_authid.rolname AS groname, pg_au

 pg_catalog | pg_user | stark | SELECT pg_shadow.usename, pg_shadow.usesys

 pg_catalog | pg_rules | stark | SELECT n.nspname AS schemaname, c.relname

(5 rows)

Psql features you won't know how
you lived without

postgres=# \pset format wrapped
Output format is wrapped.

postgres=# select * from pg_views limit 5;

 schemaname | viewname | viewowner | definition

--------------+-------------+------------+--

 pg_catalog | pg_group | stark | SELECT pg_authid.rolname AS groname, pg_authid.oid AS grosysid, ARRAY(SELECT pg_auth_m.

 | | |.embers.member FROM pg_auth_members WHERE (pg_auth_members.roleid = pg_authid.oid)) AS .

 | | |.grolist FROM pg_authid WHERE (NOT pg_authid.rolcanlogin);

 pg_catalog | pg_user | stark | SELECT pg_shadow.usename, pg_shadow.usesysid, pg_shadow.usecreatedb, pg_shadow.usesupe.

 | | |.r, pg_shadow.usecatupd, pg_shadow.userepl, '********'::text AS passwd, pg_shadow.valun.

 | | |.til, pg_shadow.useconfig FROM pg_shadow;

 pg_catalog | pg_rules | stark | SELECT n.nspname AS schemaname, c.relname AS tablename, r.rulename, pg_get_ruledef(r.o.

 | | |.id) AS definition FROM ((pg_rewrite r JOIN pg_class c ON ((c.oid = r.ev_class))) LEFT .

 | | |.JOIN pg_namespace n ON ((n.oid = c.relnamespace))) WHERE (r.rulename <> '_RETURN'::nam.

 | | |.e);

(5 rows)

Interesting uses of transactional
DDL

postgres=# BEGIN;
BEGIN
postgres=# create index on gianttable (status);
CREATE INDEX
postgres=# analyze gianttable;
ANALYZE
postgres=# explain select * from gianttable where status = 'FOO';
 QUERY PLAN
--
 Bitmap Heap Scan on gianttable (cost=4.30..13.76 rows=6 width=44)
 Recheck Cond: ((status)::text = 'FOO'::text)
 -> Bitmap Index Scan on gianttable_status_idx (cost=0.00..4.30 rows=6 width=0)
 Index Cond: ((status)::text = 'FOO'::text)
(4 rows)

postgres=# rollback;
ROLLBACK
postgres=# explain select * from gianttable where status = 'FOO';
 QUERY PLAN
--
 Seq Scan on gianttable (cost=0.00..23.75 rows=6 width=44)
 Filter: ((status)::text = 'FOO'::text)
(2 rows)

Lastly, psql features you won't know
how you lived without

postgres=# \set AUTOCOMMIT off

postgres=# \set ON_ERROR_ROLLBACK on

This lets you perform complex updates, inserts, deletes, then perform selects to verify
the data matches expectations, then commit or rollback before the changes are visible
to users.

It also lets you hit C-c on a slow operation or correct a typo without losing all the work
done in that transaction so far.

Caveat, it doesn't play nicely with some non-transactional commands like VACUUM
and CREATE INDEX CONCURRENTLY.

