Things You Didn't Know PostgreSQL Could Do!

To say there are many features in PostgreSQL is to make a gross understatement. Which features can help
you save time with your project? Which ones can help boost your application performance? Which ones
are just cool to play with?

Combine multiple indexes

SELECT *
FROM tab
WHERE a =7

AND b =7

A btree index on <a> and a btree index on can be
combined using a bitmap scan.

This isn't as efficient as an index on <a,b> or <b,a> but...

Combine multiple indexes

SELECT *
FROM tab
WHERE a < ?

AND b <?

In this case no two column btree index would suffice.

But this still requires scanning two large indexes and
combining the results. Postgres will often choose not to do
so since the second index may be creating more work than

it's saving.

When is one index better than two?

SELECT *
FROM tab
WHERE a > 10

AND b <0

An index like:
CREATE INDEX magic ON tab (a) WHERE b <0

Partial indexes are like having a hidden second index key. It's
like two indexes in one. It's like having a second index on
without using any storage space at all.

When are many indexes better than one*

SELECT *
FROM tickets
WHERE status = ?
AND last _update > now() - '5 days'

CREATE INDEX disappointing ON tickets (status, last_update)

status is probably too low cardinality to be very helpful. And it
dramatically increases the size of the index for not much gain
In selectivity.

When are many indexes better than one*

SELECT *
FROM tickets
WHERE status = ?
AND last _update > now() - '5 days'

CREATE INDEX neat_1 ON tickets
CREATE INDEX neat_2 ON tickets
CREATE INDEX neat_3 ON tickets
CREATE INDEX neat_4 ON tickets

last_update) WHERE status = 'NEW'
last_update) WHERE status = 'ASSIGNED'
last_update) WHERE status = 'PENDING'
last_update) WHERE status = 'RESOLVED'

AN N N N

This takes more or less the same space as a single index on
"last_update" and is effectively like having a bitmap index on
status for free.

Postgres doesn't have pivot tables
does it?

An often asked-for feature, they would let you
do the equivalent of GROUP BY but get
separate columns for each grouping key.

Postgres can't change the "shape" of the result
based on the data so the set of columns has to

be fixed.

But Postgres does have complex types....
Arrays provide a handy escape hatch:

Postgres doesn't have pivot tables
does it?

What we want to do:

SELECT sum(revenue)
FROM revenue table
GROUP BY month, country
PIVOT BY country

UsS CA UK

January

February

March

o | ©O| ©)| ©
o | ©o| ©)| ©
o | ©O| ©)| ©

April

Postgres doesn't have pivot tables
does it?

SELECT month,
array_agg(ROW(country,rev))
AS revenue_list
FROM (
SELECT month,country,
sum(revenue) as rev
FROM revenue table
GROUP BY month, country
) AS row
GROUP BY month order

Postgres doesn't have pivot tables
does it?

What we get isn't as pretty but from a client-
side language which supports composite types
it can actually be easier to work with than
separate columns:

revenue_list

January {"(CA,0)","(US,0)","(UK,0)"}
February {"(CA,0)","(US,0)","(UK,0)"}
March S,0)","(UK,0)"}

)",)"}

"("(
"(CA,0)","(U
"(CA,0)","(US,0

April "(UK,0

This query was translated from MS-
SQL. The original used pivot tables.

WITH RECURSIVE
x(i) AS (VALUES(0) UNION ALL SELECT i + 1 FROM x WHERE i < 101
Z(Ix, Iy, Cx, Cy, X, Y, I) AS
SELECT Ix, Iy, X::float, Y::float, X::float, Y::float, O
FROM
SELECT -2.2 + 0.031 * i, i FROM x) AS xgen(X,ix
CROSS JOIN
SELECT -1.5 + 0.031 * i, i FROM x) AS ygen(y,iy
UNION ALL
SELECTIX, Iy, Cx, Cy, X * X -Y*Y +CxASX, Y *X*2+Cy, I +1
FROM Z
WHERE X * X +Y *Y < 16.0
AND I < 27

Zt (Ix, 1y, 1) AS It's actually simpler and resulting query is

SELECT Ix, Iy, MAX(I) AS I much shorter using array_agg() and

FROM Z . .
GROUP BY Iy, Ix array_to_string() instead.

ORDER BY ly, Ix

SELECT array_to_string
array_agg
SUBSTRING
- ++++%%%%Q@QQ@Q@# ###
GREATEST(I

FROM Zt
GROUP BY ly
ORDER BY ly;

This query was translated from MS-
SQL. The original used pivot tables.

mandelbrot

F Y Y ek & L I T S

B R N A A A A R A R R A R R RN NN N it L e SN RN SRS SR NS R

B S R R R R R R R I &I 3 e S R R R R R
B R N A A A R R R R N R Y it i N N RN RN N A
B R N NN S NN NN NN NN S NN Sttt L N N N R R R A L AR AR

e

B N el et o

e s A1

R N N NN N NN RN NN NN NN St % SHEHRSESS =, e
R R R R R N R R N it e R N N R R
R R R R R R R R N T et] e S N N S R AR
R N R R R R R AR R AR Suinininl ittt R S N A SRR

+@ _——
covvrrrrrrrrrrrrrrrrrrr = +@ + I

R R R i & it fitttl @@=/ v vrrrrrrrrreenn-

rrrrrrrr iy S+++# +3----— R N SRR EREE
R R R RN R ettt s A @%+++% =i
R R RS Attt o & %%Q R N PN
rrerrrrrrerre g === %===+@ ¢ STrrrrrrrr i e
N R R R RN Sttt 2 0 P N IR
PR R ittt b o TTThrrrrrrrrrrrrrrr e

B R

R R R Sttt b) TTTirrrrrrrrr e
R R RN Saluintat ittt (¢ TThrrrrr e
R R R RN RN ittt i $%Q S i
R R et s I @%+++% R A IR
Frrrrrrrr g TTTTT + St 4% +# e N N R AR
R R R R N R i & ittt @@=/ v vrrrrrrrrreenn-
R AN AR N +@ o
R R R R R R R R R A NS il Sttt R RN NN R
R N N R R R R R RN R N R N inininiaintts i i] A A AR
R R R N R R R R AR N i e s
B N N N NN RN NN RN NN N St 4 % SHEHESHS =, s
B N R R R R it &2 bt G @ + %----- N NN N N N R

Gmmmmm e

T et e

B R Y A N A R A A R A R R Y it e A A A R A A A A R R R

B R N N N N N NN NN NN N NN RN NN Stk L N NN N N NN RN N NN
B RN I LI £ e R R R RN R R R R R
B R N R R N i 3 I e N N N S NN NN N S S R RN N N R
. N A R R R R R R R R AR Y aniinint s i N N NN N SN

(44 rows)

Finding the median

A perennial question for smarties, Postgres
doesn't have a great way to find the median but
did you know the OFFSET and LIMIT clauses
can take arbitrary sub expressions including
subqueries?

SELECT *
FROM tab
ORDER BY height
OFFSET (select count(*) from tab)/2
LIMIT 1

Top-k queries and pagination

Similarly if you want to retrieve the top k results or results 11-20 for a page, let
the database know it doesn't have to sort the entire result set:

SELECT *
FROM tab
WHERE ...
ORDER BY k1,k2,k3
OFFSET 11
LIMIT 10

The database optimizes this and keeps only the top 20 results in memory at all
times. This means it won't have to spill to disk to perform a batch disk sort even
if the result set is huge.

Psql features you won't know how
you lived without

postgres=# select * from pg views limit 5;

schemaname

———————————— o

Pg catalog
Pg catalog
pPg catalog
Pg catalog
Pg catalog

(5 rows)

viewname	viewowner
pg roles	stark
pg shadow	stark
pg group	stark
pg user	stark
pg rules	stark

SELECT
SELECT
SELECT
SELECT
SELECT

pg authid.
pg authid.
pg_authid.
Pg shadow.

n.nspname

rolname, pg authid.rolsup
rolname AS usename, pg au
rolname AS groname, pg_ au
usename, pg shadow.usesys

AS schemaname, c.relname

Psql features you won't know how
you lived without

postgres=# \pset format wrapped
Output format is wrapped.

postgres=# select * from pg views limit 5;

schemaname | viewname viewowner definition
—————————————— o
pg_catalog | pg_group | stark | SELECT pg authid.rolname AS groname, pg authid.oid AS grosysid, ARRAY (SELECT p
| .embers.member FROM pg auth members WHERE (pg_auth members.roleid = pg authid.oid
| .grolist FROM pg authid WHERE (NOT pg authid.rolcanlogin);
pg_catalog | pg user | stark | SELECT pg shadow.usename, pg shadow.usesysid, pg shadow.usecreatedb, pg shadow

pg_catalog | pg rules

(5 rows)

stark

.r, pg _shadow.usecatupd, pg shadow.userepl, "*****x**x1.:text AS passwd, pg_ shadow

.til, pg shadow.useconfig FROM pg shadow;

| SELECT n.nspname AS schemaname, c.relname AS tablename, r.rulename, pg get rul

.id) AS definition FROM ((pg rewrite r JOIN pg class ¢ ON ((c.oid = r.ev _class)))
.JOIN pg namespace n ON ((n.oid = c.relnamespace))) WHERE (r.rulename <> ' RETURN

.e);

imneresung uses oOr uadnsdactonai
DDL

postgres=# BEGIN;

BEGIN

postgres=# create index on gianttable (status);

CREATE INDEX

postgres=# analyze gianttable;

ANALYZE

postgres=# explain select * from gianttable where status = 'FOO",
QUERY PLAN

Bitmap Heap Scan on gianttable (cost=4.30..13.76 rows=6 width=44)
Recheck Cond: ((status)::text = 'FOO'"::text)
-> Bitmap Index Scan on gianttable status_idx (cost=0.00..4.30 rows=6 width=0)
Index Cond: ((status)::text = 'FOQ"::text)
(4 rows)

postgres=# rollback;

ROLLBACK

postgres=# explain select * from gianttable where status = 'FOO";
QUERY PLAN

Seq Scan on gianttable (cost=0.00..23.75 rows=6 width=44)
Filter: ((status)::text = 'FOQO"::text)
(2 rows)

Lastly, psqgl features you won't know
how you lived without

postgres=# \set AUTOCOMMIT off
postgres=# \set ON ERROR ROLLBACK on

This lets you perform complex updates, inserts, deletes, then perform selects to verify
the data matches expectations, then commit or rollback before the changes are visible
to users.

It also lets you hit C-c on a slow operation or correct a typo without losing all the work
done in that transaction so far.

Caveat, it doesn't play nicely with some non-transactional commands like VACUUM
and CREATE INDEX CONCURRENTLY.

