

When PostgreSQL Can't,
You Can

● Keith Fiske
● DBA @ OmniTI

http://www.omniti.com keith@omniti.com
http://www.keithf4.com @keithf4

http://www.omniti.com/
http://www.keithf4.com/

OmniTI, Inc
● Full-stack support for high-traffic websites & applications

– Millions of users

– Terabytes of data

– Gilt Groupe, Etsy, Ora.TV, Freelotto

● Surge Conference - http://omniti.com/surge

– Disaster Porn

– Annually in Sept

● We're hiring!

PG Extractor
● pg_dump/pg_restore limitations (-t, -n, -P)

● Filter by schema, table, view, function, type, owner

● Dumps each database object to its own file

● Use regex matching

● Python class (requires python 3)

Extensions
● Introduced in 9.1

● Logically grouped set of database objects

– CREATE EXTENSION pg_partman [SCHEMA partman];

● Versioned

– ALTER EXTENSION pg_partman UPDATE TO '1.6.1';

– Update and revert changes predictably.

PG Jobmon
● Autonomous functions

● Log steps of running function

● Monitors logged functions to ensure they complete

● If/when they fail, where and why

PG Jobmon

add_job('job name');

add_step(job_id, 'What this step will do');
… do some stuff...

update_step(step_id, 'good_status', 'What this step did successfully');

add_step(job_id, 'What this next step will do');
...do some stuff in a loop...
update_step(step_id, 'good_status', 'update every loop iteration to track progress');

add_step(job_id, 'One last step');
… do just a bit more stuff...

update_step(step_id, 'good_status', 'Job finished ok');

close_job(job_id);

EXCEPTION
WHEN OTHERS THEN

update_step(step_id, 'bad_status', 'Uh..oh...: '||coalesce(SQLERRM,'wat'));
fail_job(job_id);

PG Jobmon
show_job('my job name', [int]);

-[RECORD 3]-----------------------------
job_id | 10
owner | keith
job_name | PG_JOBMON TEST BAD JOB
start_time | 2012-09-15 00:55:44.742176-04
end_time | 2012-09-15 00:55:44.851514-04
status | CRITICAL
pid | 5848
-[RECORD 4]-----------------------------
job_id | 9
owner | keith
job_name | PG_JOBMON TEST GOOD JOB
start_time | 2012-09-15 00:55:44.293575-04
end_time | 2012-09-15 00:55:44.725483-04
status | OK
pid | 5848

show_job_like('I forgot my job's whole name', [int]);

show_detail(job_id);
show_detail('job_name', [int]);

show_job_status('bad_status', [int]);
show_job_status('job name', 'status', [int]);

show_running([int]);

-[RECORD 1]+------------------------------
job_id | 9
step_id | 19
action | Test step 1
start_time | 2012-09-15 00:55:44.501825-04
end_time | 2012-09-15 00:55:44.593389-04
elapsed_time | 0.091564
status | OK
message | Successful Step 1
-[RECORD 2]+------------------------------
job_id | 9
step_id | 20
action | Test step 2
start_time | 2012-09-15 00:55:44.643017-04
end_time | 2012-09-15 00:55:44.659336-04
elapsed_time | 0.016319
status | OK
message | Rows affected: 2
-[RECORD 3]+------------------------------
job_id | 9
step_id | 21
action | Test step 3
start_time | 2012-09-15 00:55:44.692518-04
end_time | 2012-09-15 00:55:44.7087-04
elapsed_time | 0.016182
status | OK
message | Successful Step 3

PG Jobmon

check_job_status(interval);

● Make nagios check (command and service configs on my blog)

● Shameless plug – http://circonus.com (howto on my blog)

SELECT t.alert_text || c.alert_text AS alert_status
FROM jobmon.check_job_status() c
JOIN jobmon.job_status_text t ON c.alert_code = t.alert_code;

 alert_status

 OK(All jobs run successfully)

 alert_status
--
CRITICAL(KEITH.SOME_OTHER_PROCESS: MISSING - Last run at 2012-09-13
07:17:07.86378-04; KEITH.ANOTHER_PROCESS: MISSING - Last run at 2012-09-13
07:16:30.169683-04;)

 alert_status
--
 WARNING(KEITH.SOME_CRITICAL_PROCESS: RUNNING;)

Mimeo
Per-table Replication Extension

“The stencil duplicator or mimeograph machine
(often abbreviated to mimeo) is a low-cost
printing press that works by forcing ink through a
stencil onto paper...Mimeographs were a
common technology in printing small quantities,
as in office work, classroom materials, and
church bulletins.” – Wikipedia

Mimeo
● Streaming & Log Shipping Replication (omnipitr)

● Per-table replication

– Snapshot

– Incremental

– DML

● Quick replication setup and tear-down

● Installed & run from destination database.

● No superuser required

● Column filter

● Where Condition

● Monitor & Audit Trail w/ PG Jobmon

Types of Replication
● Snapshot

– Whole table replication

– Two tables w/ single view

● Minimize transactional lock during data migration

● Brief exclusive lock to swap view source

– Ideal for small or static tables

– Faster than DML replay if majority of table changes often

– Replicate column changes (new, dropped, type)

– No replication if source data has not changed

● Table

– Single table, no views

– Options to handle FK (cascade) and reset sequences

– Good for dev database

Types of Replication
● Incremental

– Control timestamp column (serial in dev)

– High transaction tables w/ timestamp set every insert

– With primary/unique key, can also support updates

– DST

● Run database in GMT/UTC

● Replication does not run

Types of Replication
● DML

– Replay Inserts, Updates, Deletes

– Trigger w/ queue table on source

– Doesn't actually replay

● Queue table of only primary/unique key values for every write

● Distinct on queue table

● Delete all matches on destination & re-insert

– Supports multiple destinations

Types of Replication
● Log Deletes

– Same methods as DML but does not replay deletes

– Common in data warehousing

– Queue table stores entire row if it's deleted

– Destination has special column with timestamp of row's deletion

Use Cases
● Table audit

– Trigger to track all changes to audit table w/ audit_timestamp column

– Use incremental replication on audit table to pull to data warehouse.

– Time-based partitioning on source audit table to easily drop old data with
minimal impact on production.

● Database Upgrade

– Can connect with dblink to any version that supports it

– Setup replication for larger tables to minimize downtime for pg_dump
upgrade method.

PG Partition Manager

● Current partition management is entirely manual

– http://www.postgresql.org/docs/current/static/ddl-partitioning.html

● Custom write all tables, triggers, functions, rules, etc.

● Core devs working on getting it built in

– https://wiki.postgresql.org/wiki/Table_partitioning

● In the mean time ...

http://www.postgresql.org/docs/current/static/ddl-partitioning.html
https://wiki.postgresql.org/wiki/Table_partitioning

Automated Creation

● Time & Serial Based Partitioning
– Yearly, Quarterly, Monthly, Weekly, Daily, Hourly, ½ hour, ¼ hour

– Custom time interval

● Static & Dynamic Triggers

● Pre-creates partitions (customizable how many)

● Manage child table properties from parent

– Indexes, constraints, defaults, privileges & ownership

● Automatically updates trigger functions as needed.

● Handles object name length limit (63 char)

● Constraint exclusion for non-partition columns

Automated Creation

● Python script to partition existing data

● Commits after each partition created or

● Commit in smaller batches with configured wait

● Partition live, production tables

– Partitioned 74 mil row table by day (30 days of data)

– Committed in hourly blocks w/ 5 second wait

– Streaming slave never fell more than 100 seconds behind

– 2-3 second lock on parent was only interruption

Static Partitioning
● Readable functions!

CREATE OR REPLACE FUNCTION partman_test.time_static_table_part_trig_func()
 RETURNS trigger
 LANGUAGE plpgsql
AS $function$
 BEGIN
 IF TG_OP = 'INSERT' THEN
 IF NEW.col3 >= '2013-03-21 00:00:00-04' AND NEW.col3 < '2013-03-22 00:00:00-04' THEN
 INSERT INTO partman_test.time_static_table_p2013_03_21 VALUES (NEW.*);
 ELSIF NEW.col3 >= '2013-03-20 00:00:00-04' AND NEW.col3 < '2013-03-21 00:00:00-04' THEN
 INSERT INTO partman_test.time_static_table_p2013_03_20 VALUES (NEW.*);
 ELSIF NEW.col3 >= '2013-03-22 00:00:00-04' AND NEW.col3 < '2013-03-23 00:00:00-04' THEN
 INSERT INTO partman_test.time_static_table_p2013_03_22 VALUES (NEW.*);
 ELSIF NEW.col3 >= '2013-03-19 00:00:00-04' AND NEW.col3 < '2013-03-20 00:00:00-04' THEN
 INSERT INTO partman_test.time_static_table_p2013_03_19 VALUES (NEW.*);
 ELSIF NEW.col3 >= '2013-03-23 00:00:00-04' AND NEW.col3 < '2013-03-24 00:00:00-04' THEN
 INSERT INTO partman_test.time_static_table_p2013_03_23 VALUES (NEW.*);
 ELSE
 RETURN NEW;
 END IF;
 END IF;
 RETURN NULL;
 END $function$

Dynamic Partitioning
CREATE OR REPLACE FUNCTION partman_test.time_dynamic_table_part_trig_func()
 RETURNS trigger
 LANGUAGE plpgsql
AS $function$
 DECLARE
 v_count int;
 v_partition_name text;
 v_partition_timestamp timestamptz;
 v_schemaname text;
 v_tablename text;
 BEGIN
 IF TG_OP = 'INSERT' THEN
 v_partition_timestamp := date_trunc('day', NEW.col3);
 v_partition_name := 'partman_test.time_dynamic_table_p'|| to_char(v_partition_timestamp, 'YYYY_MM_DD');
 v_schemaname := split_part(v_partition_name, '.', 1);
 v_tablename := split_part(v_partition_name, '.', 2);
 SELECT count(*) INTO v_count FROM pg_tables WHERE schemaname = v_schemaname AND tablename
= v_tablename;
 IF v_count > 0 THEN
 EXECUTE 'INSERT INTO '||v_partition_name||' VALUES($1.*)' USING NEW;
 ELSE
 RETURN NEW;
 END IF;
 END IF;

 RETURN NULL;
 END $function$

MAGIC

Automated Destruction

● Configurable retention policy

– Time: Drop tables with values older than 3 months

– Serial: Drop tables with values less than 1000 minus current max

● By default only uninherits

● Can drop old tables or only their indexes

● Dump out tables for archiving

● Python script to undo partitioning

PgTAP

● Unit testing for PostgreSQL queries, schema &
scripting

● Essential for extension development

● … and your sanity

● http://pgtap.org/

http://pgtap.org/

Links

● https://github.com/omniti-labs/pg_extractor

● https://github.com/omniti-labs/pg_jobmon

● https://github.com/omniti-labs/mimeo

● https://github.com/keithf4/pg_partman

https://github.com/omniti-labs/pg_extractor
https://github.com/omniti-labs/pg_jobmon
https://github.com/omniti-labs/mimeo
https://github.com/keithf4/pg_partman

Bonus!

● pg_bloat_check.py

● Stol... borrowed query from check_postgres.pl

● Provide easily readable report on current status of
table & index bloat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

