
Fast GiST index build

Alexander Korotkov
PostgreSQL Conference Europe 2011, Amsterdam

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 20112

Ordinal GiST index build

We have to insert index tuples one by one

I1 I2

I3 I4 I5 I6

L1 L2 L9 L3L14 L5 L6 L16L7 L8 L10

L9, L10, L11, L12,
L13, L14, L15, L16

L11 L12L15 L13L4

When something go wrong with ordinal
GiST index build algorithm?

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 20114

Index too large to fit into cache

Significant fraction of index tuple inserts cause
random IO

I1 I2

I3 I4 I5 I6

L1 L2 L9 L3 L5 L6 L7 L8 L10

L9, L10, L11, L12,
L13, L14, L15, L16

L11L4

Cache

L14 L16L12L15 L13

Random read

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 20115

High concurrency

If even index can fit to entire cache, other
backends also use cache. So, even not too
large index can be out of cache.

I1 I2

I3 I4 I5 I6

L1 L2 L3 L5 L6 L7 L8L4

I1 I2

L1 L2 L3 L4 L5 L6

L4 L1 L2 L6 L3L5

GiST index

Other useful stuff

Cache

What helps to orginal GiST index build
algorithm?

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 20117

High overlap

gistchoose selects the first path with zero
penalty (if any).

I1
I2

I3

I4

I5

I6

L9L1

L2
L3

L4

L5

L6

L7
L8

L16

L15

L14

L13

L12

L11

L10

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 20118

Ordered datasets

Ordered dataset cause inserts to be in the recently
accessed part of index. That's very good for
caching.

I1 I2

I3 I4 I5 I6

L1 L2 L9 L3L10 L5 L6 L16L7 L8 L15

L9, L10, L11, L12,
L13, L14, L15, L16

L11 L13L12 L14L4

The buffering GIST index build technique

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201110

General idea

Remember index tuples which are going to
specific part of tree, and then process pack of
them later.

I1 I2

I3 I4 I5 I6

L1 L2 L9 L3L14 L5 L6 L16L7 L8 L10

L9, L11, L14, L15

L11 L12L15 L13L4

L10, L12, L13, L16

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201111

Buffering algorithm

Buffering algorithm is a recursive application of
that idea.

Page Buffer

Page Page

Page Buffer Page Buffer

Page PagePage Page

Page Buffer Page Buffer Page Buffer Page Buffer

Page Page Page Page Page Page Page Page

…........

…...........

…..................

….

….

Page

Page Page Page Page PagePagePagePage…...................

level
step

level
step

level
step

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201112

Buffer emptying

Lowest level overflowed buffer can be emptied to
leaf pages.

I1 I2

I3 I4 I5 I6

L1 L2 L9 L3L14 L5 L6 L16L7 L8 L10

L9, L10, L11, L12, L13, L14, L15, L16

L11 L12L15 L13L4

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201113

Buffer emptying

Higher level overflowed buffers can be emptied
to lower level buffers.

I1 I2

I3 I4 I5 I6

I7 I8

L9

I9

L14

I11 I12

L16

I13 I14

L10

L9, L10, L11, L12, L13, L14, L15, L16

L11 L12L15 L13

I10

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201114

Page splitting

When page is splitting, attached buffer is splitting
too.

I1 I2

I1 I2 L9, L14, L11, L15

L9, L10, L11, L12, L13, L14, L15, L16I3 I4

I4, I5

I3 I4 I5 L12, L13, L10, L16

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201115

Final buffers emptying

When all the tuples are inserted, final buffers
emptying stage is starting. All even non-
overflowed buffers are emptying in up-to-down
manner.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201116

Buffer size and level step selection

● Subtree of level step height should fits to
cache. Therefore, operations inside subtree are
IO efficient.

● Buffer size should be comparable with size of
subtree. Thus, IO would be comparable with
size of inserted data.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201117

Varlena data

Level step and buffer size parameters are
depending on index tuple size.

● Level step is determined for worst case.
Subtree should fits to cache, even if all varlena
tuples are of minimal size.

● Buffer size is in runtime tuning based on
average size of inserted index tuples.

Analysis

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201119

When does buffering help?

● Somebody may be dissapointed, but buffering
helps only if bottleneck of index build is IO (it
could be rather dramatic help).

● GiST is also CPU expensive in comparison with,
for example, Btree, because many penalty and
consistent calls (it have to do that calls for each
index tuple in page which is in use). Buffering
doesn't do any help with that.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201120

Node splitting algorithm tradeoff

● With buffering build we can now be sure that
even large index tree with low overlaps doesn't
require enormous time to construct.

● With buffering build, it's a good time to
descrease overlaps by new node splitting
algorithm.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201121

Double sorting node splitting

● Is based on more comprehensive consideration
of splits along axis.

● Has complexity O(n*log(n)), n — tuples count.
● On large datasets it shows much better index

quality, because of less overlap (page accesses
can be less in times or even dozens of times!)

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201122

IO vs CPU tradeoff

● Buffering technique is optimizing IO, but it
costs additional CPU load.

● When index fits to cache, buffering is just
waste of CPU.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201123

IO vs CPU tradeoff

"buffering" parameter of GiST index
● on — try to use buffering anyway (if have

enough of RAM)
● off — don't use buffering anyway
● auto (default) — try to switch to buffering when

index size exceeds effective_cache_size

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201124

Testing

Dataset Split method Build method Actual time Search time

Uniform New linear regular 17 h 39 m 1

buffering 3 h 23 m 0.90

Double sorting regular 9 d 10 h 0.089

buffering 4 h 11 m 0.089

USNOA2
(ordered)

New linear regular 56 m 1

buffering 1 h 27 m 0.46

Double sorting regular 45 m 0.37

buffering 1 h 29 m 0.36

USNOA2
(shuffled)

New linear regular 10 h 12 m 1

buffering 3 h 16 m 0.89

Double sorting regular 8 d 20 h 0.072

buffering 4 h 20 m 0.067

Test setup with 2Gb of RAM builds index on 100M of row.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201125

Analysis

Buffering techinique:
● Accelerate build of non-overlapping trees on

shuffed data in dozens of times!
● Might accelerate build of even high-overlapping

trees (depending of OS cache strategy)
● Adds some slowdown to index build on well-

ordered datasets.

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201126

Future work

● Improve automatic switching to buffering build
mode (detect concurrent load and ordered
datasets)

● Decrease CPU usage
● Extend GiST interface with special features for

index build (for example, Hilbert's curve).

Fast GiST index build, Alexander Korotkov, PostgreSQL Conference Europe 201127

Acknowledgement

● Oleg and Teodor for giving direction and
advices

● Heikki Linnakages for mentoring and his work
on this patch

● GSoC for funding of this project

Thank you for attention!
Questions are welcome!

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28

