
Explain This!
Por Fábio Telles Rodriguez

Fábio Telles Rodriguez

• Consultor pela Timbira
• DBA Oracle e PostgreSQL + 15 anos
• Colaborador da Comunidade Brasileira de PostgreSQL
• Blog: savepoint.blog.br
• telles@timbira.com.br
• @telles

Troubleshooting

Siga aquele cara…

(fique de olho no PID em
vermelho)

top -ci
top - 05:55:43 up 16 days, 1:05, 1 user, load average: 4,15, 4,91, 5,10
Tasks: 268 total, 5 running, 263 sleeping, 0 stopped, 0 zombie
%Cpu(s): 29,4 us, 2,2 sy, 0,0 ni, 60,9 id, 7,0 wa, 0,0 hi, 0,2 si, 0,3 st
KiB Mem : 49458404 total, 283300 free, 731524 used, 48443580 buff/cache
KiB Swap: 2097148 total, 1933544 free, 163604 used. 41707168 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28020 postgres 20 0 6685304 6,156g 6,150g R 99,7 13,1 7:37.10 postgres: user_zzz db_zzz 192.168.193.49(41822) SELECT
29777 postgres 20 0 6686492 5,927g 5,920g R 99,7 12,6 1:39.24 postgres: postgres db_zzz [local] DELETE
29804 postgres 20 0 6702516 5,622g 5,605g R 95,7 11,9 0:41.25 postgres: postgres db_zzz [local] CREATE TABLE AS
25214 postgres 20 0 6696060 6,171g 6,160g R 24,6 13,1 104:59.68 postgres: user_zzz db_zzz 192.168.163.81(58832) SELECT
28205 postgres 20 0 6685260 6,137g 6,131g S 23,6 13,0 6:10.22 postgres: user_zzz db_zzz 192.168.193.49(41828) idle
28268 postgres 20 0 6685308 6,149g 6,143g S 13,6 13,0 7:11.18 postgres: user_zzz db_zzz 192.168.193.49(41830) idle
13819 postgres 20 0 6697552 6,165g 6,147g S 12,0 13,1 36:54.04 postgres: user_zzz db_zzz 192.168.149.241(37806) idle
27643 postgres 20 0 7729100 6,167g 6,144g S 6,3 13,1 5:02.79 postgres: autovacuum worker process db_zzz
23484 postgres 20 0 6680064 8348 7888 S 1,3 0,0 109:13.33 postgres: wal sender process postgres
192.168.185.210(57958) streaming 4C24/9B795B90
 6149 postgres 20 0 6679408 6,119g 6,119g S 1,0 13,0 151:08.36 postgres: writer process
22375 postgres 20 0 6687356 6,167g 6,160g S 1,0 13,1 39:53.23 postgres: user_zzz db_zzz 192.168.163.81(59232) idle
 8398 postgres 20 0 6696236 6,172g 6,160g S 0,7 13,1 55:45.06 postgres: user_zzz db_zzz 192.168.163.81(59194) idle

iotop
Total DISK READ : 16.97 M/s | Total DISK WRITE : 12.51 M/s
Actual DISK READ: 16.92 M/s | Actual DISK WRITE: 8.57 M/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
28205 be/4 postgres 4.39 M/s 0.00 B/s 0.00 % 17.95 % postgres: user_zzz db_zzz 192.168.193.49(41828) idle
17811 be/4 postgres 3.22 M/s 54.53 K/s 0.00 % 10.81 % postgres: user_zzz db_zzz 192.168.149.241(38098) idle
 9896 be/4 postgres 0.00 B/s 1744.80 K/s 0.00 % 6.78 % postgres: user_zzz db_zzz 192.168.163.81(59200) idle
27643 be/4 postgres 9.36 M/s 4.17 M/s 0.00 % 3.33 % postgres: autovacuum worker process db_zzz
25214 be/4 postgres 0.00 B/s 2.89 M/s 0.00 % 1.44 % postgres: user_zzz db_zzz 192.168.163.81(58832) idle
 6150 be/4 postgres 0.00 B/s 1028.19 K/s 0.00 % 0.79 % postgres: wal writer process
 3455 be/3 root 0.00 B/s 101.26 K/s 0.00 % 0.53 % [jbd2/sdc-8]
22375 be/4 postgres 0.00 B/s 179.15 K/s 0.00 % 0.24 % postgres: user_zzz db_zzz 192.168.163.81(59232) idle
30021 be/4 postgres 0.00 B/s 327.15 K/s 0.00 % 0.00 % postgres: postgres db_zzz [local] CREATE TABLE AS
 6149 be/4 postgres 0.00 B/s 2.08 M/s 0.00 % 0.00 % postgres: writer process
27115 be/4 postgres 0.00 B/s 15.58 K/s 0.00 % 0.00 % postgres: user_zzz db_zzz 192.168.193.49(41806) SELECT

pg_stat_activity
SELECT
pid, usename, client_addr,
state, application_name, query_start, xact_start,
wait_event_type, query
FROM pg_stat_activity
WHERE

state NOT LIKE 'idle%' AND
pid != pg_backend_pid()

ORDER BY usename, client_addr desc, xact_start desc, backend_start
desc;

 pid | usename | client_addr | state | application_name | query_start | xact_start | query
-------+----------+----------------+--------+--------------------+------------------------------+--------------------------------+---------------

 30339 | postgres | | active | psql | 2017-12-08 06:11:06.853674+00 | 2017-12-08 06:10:02.040758+00 | DELETE FROM
 27643 | postgres | | active | | 2017-12-08 04:41:32.867775+00 | 2017-12-08 04:41:32.867775+00 | autovacuum:
 28473 | user_zzz | 192.168.193.49 | active | ManagerAlertSearch | 2017-12-08 06:11:44.371805+00 | 2017-12-08 06:11:43.846183+00 | SELECT id FROM
(3 registros)

pg_stat_statements
\x
Expanded display is on.
SELECT * FROM pg_stat_statements ORDER BY total_time DESC LIMIT 5;
-[RECORD 1]-------+--
userid | 10
dbid | 16402
query | WITH totalgeral AS (SELECT COALESCE(SUM(item.valortotal + item.valoracrescimo + ...
calls | 9874
total_time | 1418685132
rows | 186052
shared_blks_hit | 1655871472824
shared_blks_read | 125879385
shared_blks_dirtied | 2938970
shared_blks_written | 189530
local_blks_hit | 0
local_blks_read | 0
local_blks_dirtied | 0
local_blks_written | 0
temp_blks_read | 602311
temp_blks_written | 602311
blk_read_time | 1231114.525
blk_write_time | 71331.473
-[RECORD 2]-----
...

pgBadger

Execução de
 uma consulta

https://www.postgresql.org/
developer/backend/

EXPLAIN

EXPLAIN
EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 BUFFERS [boolean]
 TIMING [boolean]
 SUMMARY [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

EXPLAIN
postgres=# EXPLAIN SELECT 1;
 QUERY PLAN
--
 Result (cost=0.00..0.01 rows=1 width=0)
(1 row)

postgres=# EXPLAIN SELECT 1 + 1;
 QUERY PLAN
--
 Result (cost=0.00..0.01 rows=1 width=0)
(1 row)

EXPLAIN
postgres=# CREATE TABLE t (id SERIAL, texto TEXT);
CREATE TABLE
postgres=# INSERT INTO t (texto) SELECT 'PGConf Brasil 2018' FROM
generate_series(1,1000);
INSERT 0 1000
postgres=# EXPLAIN SELECT * FROM t;
 QUERY PLAN
--
 Seq Scan on t (cost=0.00.. 22.70 rows=1270 width=36)
(1 row)

EXPLAIN ANALYZE
postgres=# EXPLAIN ANALYZE SELECT * FROM t;
 QUERY PLAN

 Seq Scan on t (cost=0.00..22.70 rows=1270 width=36) (actual time=0.010..0.080 rows=1000
loops=1)
 Planning time: 0.040 ms
 Execution time: 0.127 ms
(3 rows)

ANALYZE
postgres=# ANALYZE t;
ANALYZE
postgres=# EXPLAIN ANALYZE SELECT * FROM t;

 Seq Scan on t (cost=0.00..17.00 rows=1000 width=23) (actual time=0.007..0.078 rows=1000
loops=1)
 Planning time: 0.050 ms
 Execution time: 0.114 ms

pg_stats
postgres=# SELECT * FROM pg_stats WHERE tablename = 't';
-[RECORD 1]----------+---
schemaname | public
tablename | t
attname | id
inherited | f
null_frac | 0
avg_width | 4
n_distinct | -1
most_common_vals |
most_common_freqs |
histogram_bounds |
{1,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,250,260,270,280,290
,300,310,320,330,340,350,360,370,380,390,400,410,420,430,440,450,460,470,480,490,500,510,520,530,540,550,560,
570,580,590,600,610,620,630,640,650,660,670,680,690,700,710,720,730,740,750,760,770,780,790,800,810,820,830,8
40,850,860,870,880,890,900,910,920,930,940,950,960,970,980,990,1000}
correlation | 1
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

pg_stats
-[RECORD]----------+--------------------------------
schemaname | public
tablename | t
attname | texto
inherited | f
null_frac | 0
avg_width | 19
n_distinct | 1
most_common_vals | {"PGConf Brasil 2018"}
most_common_freqs | {1}
histogram_bounds |
correlation | 1
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

https://www.postgresql.org/docs/current/static/view-pg-stats.html

https://www.postgresql.org/docs/current/static/view-pg-stats.html

Tarefas do otimizador

• Tipo de acesso
• Sequencial
• Bitmap
• Index

• Tipo de junção
• Nested loop
• Hash join
• Merge join

• Ordem das junções

index scan
postgres=# CREATE UNIQUE INDEX ON t (id);
LOG: statement: CREATE UNIQUE INDEX ON t (id);
CREATE INDEX

postgres=# EXPLAIN SELECT * FROM t WHERE id = 42;

 Index Scan using t_id_idx on t (cost=0.28..2.49 rows=1 width=23)
 Index Cond: (id = 42)

seq scan
postgres=# CREATE UNIQUE INDEX ON t (id);
LOG: statement: CREATE UNIQUE INDEX ON t (id);
CREATE INDEX

postgres=# EXPLAIN SELECT * FROM t WHERE id = 42;

 Index Scan using t_id_idx on t (cost=0.28..2.49 rows=1 width=23)
 Index Cond: (id = 42)

postgres=# EXPLAIN SELECT * FROM t WHERE id > 42;

 Seq Scan on t (cost=0.00..19.50 rows= 958 width=23)
 Filter: (id > 42)

Outros métodos de acesso
postgres=# CREATE TABLE ttt (id serial PRIMARY KEY, i integer);
LOG: statement: CREATE TABLE ttt (id serial PRIMARY KEY, i integer);
CREATE TABLE

postgres=# INSERT INTO ttt (i) SELECT random() * 1000000000 AS i FROM
generate_series(1,100000);
LOG: duration: 227.970 ms statement: INSERT INTO ttt (i) SELECT random()
* 1000000000 AS i FROM generate_series(1,100000);
INSERT 0 100000

postgres=# CREATE INDEX ON ttt (i);
LOG: statement: CREATE INDEX ON ttt (i);
CREATE INDEX

Outros métodos de acesso
postgres=# SELECT attname, n_distinct, correlation FROM pg_stats WHERE tablename = 'ttt';
-[RECORD 1]----------+---
attname | id
avg_width | 4
n_distinct | -1
correlation | 1
-[RECORD 2]----------+---
attname | i
avg_width | 4
n_distinct | -1
correlation | 0.00427951

Outros métodos de acesso
postgres=# EXPLAIN SELECT * FROM ttt WHERE i < 5000000 OR i > 950000000;
 QUERY PLAN
--
 Bitmap Heap Scan on ttt (cost=62.36..588.20 rows=5500 width=8)
 Recheck Cond: ((i < 5000000) OR (i > 950000000))
 -> BitmapOr (cost=62.36..62.36 rows=5523 width=0)
 -> Bitmap Index Scan on ttt_i_idx (cost=0.00..5.91 rows=455 width=0)
 Index Cond: (i < 5000000)
 -> Bitmap Index Scan on ttt_i_idx (cost=0.00..53.70 rows=5068 width=0)
 Index Cond: (i > 950000000)

postgres=# EXPLAIN SELECT id FROM ttt WHERE id < 10;
 QUERY PLAN

 Index Only Scan using ttt_pkey on ttt (cost=0.29..2.63 rows=8 width=4)
 Index Cond: (id < 10)

Outros métodos de acesso

postgres=# SELECT ctid, id FROM ttt WHERE id = 5000;
 ctid | id
---------+------
 (22,28) | 5000

postgres=# EXPLAIN SELECT * FROM ttt WHERE ctid = '(22,28)'::tid;
 QUERY PLAN

 Tid Scan on ttt (cost=0.00..1.11 rows=1 width=8)
 TID Cond: (ctid = '(22,28)'::tid)

Influenciando no otimizador

• enable_seqscan
• enable_indexscan
• enable_bitmapscan
• enable_indexonlyscan
• enable_tidscan
• enable_nestloop
• enable_hashjoin
• enable_mergejoin
• enable_hashagg
• enable_material
• enable_sort

Influenciando o otimizador
postgres=# EXPLAIN SELECT * FROM t WHERE id > 42;

 Seq Scan on t (cost=0.00..19.50 rows=958 width=23)
 Filter: (id > 42)

postgres=# SET enable_seqscan = FALSE;
SET
postgres=# EXPLAIN SELECT * FROM t WHERE id > 42;
--
 Index Scan using t_id_idx on t (cost=0.28..29.64 rows=958 width=23)
 Index Cond: (id > 42)

ORDER BY
postgres=# EXPLAIN SELECT * FROM t ORDER BY id;

 Index Scan using t_id_idx on t (cost=0.28..27.88 rows=1000 width=23)

postgres=# EXPLAIN SELECT * FROM t ORDER BY id DESC;
--
 Index Scan Backward using t_id_idx on t (cost=0.28..27.88 rows=1000 width=23)

postgres=# EXPLAIN SELECT * FROM t ORDER BY texto;
--
 Sort (cost=66.83..69.33 rows=1000 width=23)
 Sort Key: texto
 -> Seq Scan on t (cost=0.00..17.00 rows=1000 width=23)

ORDER BY
postgres=# EXPLAIN SELECT * FROM t ORDER BY texto DESC;
--
 Sort (cost=66.83..69.33 rows=1000 width=23)
 Sort Key: texto DESC
 -> Seq Scan on t (cost=0.00..17.00 rows=1000 width=23)

postgres=# EXPLAIN SELECT * FROM t WHERE id < 42 ORDER BY texto DESC;
--
 Sort (cost=4.34..4.45 rows=42 width=23)
 Sort Key: texto DESC
 -> Index Scan using t_id_idx on t (cost=0.28..3.21 rows=42 width=23)
 Index Cond: (id < 42)

LIMIT
postgres=# EXPLAIN SELECT * FROM t ORDER BY texto LIMIT 10;
--
 Limit (cost=38.61..38.63 rows=10 width=23)
 -> Sort (cost=38.61..41.11 rows=1000 width=23)
 Sort Key: texto
 -> Seq Scan on t (cost=0.00..17.00 rows=1000 width=23)

postgres=# EXPLAIN SELECT * FROM t WHERE id < 10 ORDER BY texto;
--
 Sort (cost=2.82..2.84 rows=10 width=23)
 Sort Key: texto
 -> Index Scan using t_id_idx on t (cost=0.28..2.65 rows=10 width=23)
 Index Cond: (id < 10)

LIMIT, OFFSET
postgres=# EXPLAIN SELECT * FROM t ORDER BY texto LIMIT 10 OFFSET 10;
--
 Limit (cost=43.63..43.66 rows=10 width=23)
 -> Sort (cost=43.61..46.11 rows=1000 width=23)
 Sort Key: texto
 -> Seq Scan on t (cost=0.00..17.00 rows=1000 width=23)

postgres=# EXPLAIN SELECT * FROM t ORDER BY texto LIMIT 10 OFFSET 990;
--
 Limit (cost=69.30..69.33 rows=10 width=23)
 -> Sort (cost=66.83..69.33 rows=1000 width=23)
 Sort Key: texto
 -> Seq Scan on t (cost=0.00..17.00 rows=1000 width=23)

CREATE STATISTCS (>= PG10)
CREATE STATISTICS [IF NOT EXISTS] statistics_name
 [(statistics_kind [, ...])]
 ON column_name, column_name [, ...]
 FROM table_name

CREATE TABLE t1 (
 a int,
 b int
);

INSERT INTO t1 SELECT i/100, i/500
 FROM generate_series(1,1000000) s(i);

ANALYZE t1;

CREATE STATISTCS (>= PG10)
postgres=# EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);
--
 Gather (cost=1000.00..11675.10 rows=1 width=8) (actual time=0.637..50.077 rows=100
loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on t1 (cost=0.00..10675.00 rows=1 width=8) (actual
time=28.731..45.183 rows=33 loops=3)
 Filter: ((a = 1) AND (b = 0))
 Rows Removed by Filter: 333300
 Planning time: 0.566 ms
 Execution time: 53.161 ms

CREATE STATISTCS (>= PG10)
CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;

postgres=# EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

 Gather (cost=1000.00..11684.80 rows=98 width=8) (actual time=0.698..50.546 rows=100
loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on t1 (cost=0.00..10675.00 rows=41 width=8) (actual
time=29.592..46.179 rows=33 loops=3)
 Filter: ((a = 1) AND (b = 0))
 Rows Removed by Filter: 333300
 Planning time: 0.160 ms
 Execution time: 53.096 ms

function scan
postgres=# explain analyze select * from generate_Series(1,100) i ;

--
 Function Scan on generate_series i (cost=0.00..10.00 rows=1000 width=4)
(actual time=0.061..0.092 rows=100 loops=1)
 Planning time: 0.084 ms
 Execution time: 0.166 ms

nested loop
postgres=# EXPLAIN SELECT a.*
FROM pg_class c join pg_attribute a ON c.oid = a.attrelid
WHERE c.relname IN ('pg_class', 'pg_namespace');

 Nested Loop (cost=8.84..54.73 rows=15 width=205)
 -> Bitmap Heap Scan on pg_class c (cost=8.56..14.03 rows=2 width=4)
 Recheck Cond: (relname = ANY ('{pg_class,pg_namespace}'::name[]))
 -> Bitmap Index Scan on pg_class_relname_nsp_index
(cost=0.00..8.56 rows=2 width=0)
 Index Cond: (relname = ANY ('{pg_class,pg_namespace}'::name[]))
 -> Index Scan using pg_attribute_relid_attnum_index on pg_attribute a
(cost=0.28..20.27 rows=8 width=205)
 Index Cond: (attrelid = c.oid)

nested loop
postgres=# EXPLAIN ANALYZE SELECT a.*
FROM pg_class c join pg_attribute a ON c.oid = a.attrelid
WHERE c.relname IN ('pg_class', 'pg_namespace');

 Nested Loop (cost=8.84..54.73 rows=15 width=205) (actual time=0.152..0.318 rows=50 loops=1)
 -> Bitmap Heap Scan on pg_class c (cost=8.56..14.03 rows=2 width=4) (actual time=0.126..0.141
rows=2 loops=1)
 Recheck Cond: (relname = ANY ('{pg_class,pg_namespace}'::name[]))
 Heap Blocks: exact=2
 -> Bitmap Index Scan on pg_class_relname_nsp_index (cost=0.00..8.56 rows=2 width=0) (actual
time=0.113..0.113 rows=2 loops=1)
 Index Cond: (relname = ANY ('{pg_class,pg_namespace}'::name[]))
 -> Index Scan using pg_attribute_relid_attnum_index on pg_attribute a (cost=0.28..20.27 rows=8
width=205) (actual time=0.014..0.049 rows=25 loops
=2)
 Index Cond: (attrelid = c.oid)
 Planning time: 0.562 ms
 Execution time: 0.486 ms

hash join
postgres=# EXPLAIN ANALYZE SELECT * FROM pg_class c JOIN pg_namespace n ON c.relnamespace = n.oid;

 Hash Join (cost=1.14..19.34 rows=341 width=372) (actual time=0.062..0.844 rows=342 loops=1)
 Hash Cond: (c.relnamespace = n.oid)
 -> Seq Scan on pg_class c (cost=0.00..14.41 rows=341 width=259) (actual time=0.017..0.140 rows=342
loops=1)
 -> Hash (cost=1.06..1.06 rows=6 width=117) (actual time=0.026..0.026 rows=6 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> Seq Scan on pg_namespace n (cost=0.00..1.06 rows=6 width=117) (actual time=0.009..0.015
rows=6 loops=1)
 Planning time: 0.483 ms
 Execution time: 0.986 ms

Perguntas

contato@timbira.com.br

