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Agenda

• Overview of replication systems
• How does Slony work?
• Changes Slony Can't Capture
• Clever things we do with Slony



Overview of Replication Systems

• What is replication?
o Dynamically duplicating activity from one DB into another 

DB
 INSERTs
 UPDATEs
 DELETEs



Why Replication?

• Failover
o Includes “avoiding failure”: maintenance

• Division of work
o load balancing
o doing different work on a replica

• Fast upgrades
o Create replica on new version, “fail” over



Major Technologies

• Transaction log (WAL) capture
o Built-in for Postgres 8.0+, steadily improving...

• Trigger-based replication
o Slony, Londiste, Bucardo, eRServer...

• Statement capture
o Exists on DB2, MySQL(tm), not on Postgres
o Problematic

 Nondeterministic updates, interleaving



WAL Rep - Shortcomings

• ZERO variation of schema on replica
o Indices on replicas - inconvenience or fatal?
o No altered behavior on replicas - e.g. - triggers

• Pure read-only access
o Reports cannot use temporary tables

• No good for upgrades
o Can't replicate across versions or architectures



Compare to Slony

• Complex to 
configure

• Clusters fragile  – 
more moving parts

• DDL not replicated 
automatically

• ~15% write perf. 
degradation

• Sophisticated 
failover options

• Mods possible on 
subscribers 

• Concurrent use of 
subscribers

• Fine for rapid 
Postgres upgrade



Strength = Weakness

• WAL is below-the-
water magic

• Developers aren't 
likely to accidentally 
touch anything 
below the waterline

• Slony uses visible 
database features

• Developers might 
accidentally change 
stuff out from under 
Slony



How does Slony work?

• Slonik – configuration tool - SQL-ish 
language

• Slon – C daemon for each node
• Slony Schema 

o Configuration & state in DB tables
o Stored functions used by slon/slonik

• Triggers on each replicated table capturing 
INSERT/UPDATE/DELETE



Replication Trigger Functions

• log_trigger('cluster', table_id, 'kvkkvk')
o Captures INSERT/UPDATE/DELETE + txid + sequence
o Indirect changes also work:

 Stored functions that do INSERT/UPDATE/DELETE 
fire log_trigger

 Triggers that fire stored functions …

• denyaccess()
o prevents corrupting replica



What's in a SYNC?

• active XID
• List of O/S XIDs: Active Transactions

800701

800750

800772

800824

800925
801197

801165

MinXID
800701

MaxXID
801197

801025

SYNC 1, 48752



Bank Reconciliation

• Outstanding transactions list, end of last 
month

• Start of Month
• Transactions on our books this month
• Outstanding transactions list, end of this 

month



Slony/Londiste Replication

• Outstanding transactions list, end of last 
SYNC/Tick point

• Start of new SYNC/Tick
• Transactions issued during this SYNC
• Outstanding transactions list, end of this 

SYNC/Tick



Devs Challenge: Schema Change

• New table?  Not too hard...
o Use psql to load DDL on all nodes
o CREATE SET
o SET ADD TABLE/SEQUENCE
o SUBSCRIBE SET
o Can be routinely done while system active

• Easier with WAL replication
o It just replicates everything...



Schema Modification II

• ALTER TABLE
o Slony can't capture this automatically
o Must set up a script to run via slonik EXECUTE SCRIPT
o Requires locks on tables, which often mandates outages
o Failure to use EXECUTE SCRIPT likely to cause failure 

of the cluster!!!
• WAL replication...

o Just replicates... Everything...



Changes NOT Capturable by 
Slony

• ALTER TABLE
• CREATE TABLE
• DROP TABLE
• TRUNCATE TABLE *(well, 'til PG 8.4)
• Capturing ALTER TABLE is Very Hard



WRONG Upgrade Approach

• Write a program embedding DDL changes
o If run directly, it will break replication badly
o If program queries schema to figger out changes, DBAs 

mayn't be able to figger out what should be in EXECUTE 
SCRIPT

o DBAs cannot control changes going into production, 
perhaps inducing failure of S-O, SAS 70, ISO9K audit

o People get fired. (Or perhaps should be.)



What are these standards?!?

• Sarbanes Oxley - legal response to Enron
• SAS 70 - Service Organization Audit
• ISO 27001 - Information Security Standard 
• ISO 9001 - Quality Management Systems



Sorts of things involved

• Verifying that processes are documented
o Do changes get deployed in controlled 

ways?
o Can all changes be traced back to 

establish they were properly controlled?



Audit Mechanisms

• Ticketing system (RT, Bugzilla, Mantis, ...)
• System level logging

o Unix logs, Postgres logs
• Policies

o Who's allowed access?
o Documented processes to implement 

changes (create user, alter schema,...)
• Sometimes, capture audit logs in DB



The point

• They won't tell you what your policies 
should be

• They want you to have policies
•Written down
•Evaluable
•Evaluable so that they can audit that 
they have been applied



Trigger-Based Performance Wins

• There's a performance win to be had versus 
WAL-based

• Essentially in that it's easy to do consistent 
queries against a replica
o With WAL, need to manage vacuum on 

the master to avoid data loss
o With Slony, no special management is 

needed



Why WAL has a problem here

• Replica is tracking master... OK!
• You start running a 5 hour query against replica...
• Vacuum runs on master, trims old data.
• WAL for that vacuum replicates... OOPS!!!
• Workaround: Open a transaction on the master that 

runs for 5 hours...  Ick!!! :-( 
• Alternative: hot_standby_feedback, if on 9.1.

o Still "icky" - holds onto data on master for 5h :-(



Clever(ish) Uses of Slony

• Data Capture on Replicas
o WHOIS Cache Management
o DNS Change Capture

 Cannot be done without “trigger” approach!
o Eliminates performance "hit" on master node



WHOIS Cache

• WHOIS service feeds off a replica
• Uses cache table containing constructed 

WHOIS record
• Cache invalidation triggers on replica

o On UPDATE/DELETE on domain/host/contact
o Capture ID of object for cache manager to trim from cache
o ZERO performance impact against master



DNS Processing

• Replica has triggers on crucial tables
• Capture object IDs whenever interesting 

objects are modified
• DNS state recomputed based on objects 

that have been modified
• ZERO processing cost on master node



DNS - Quasi-MultiMaster

• DNS  Master != Registry Master
o DNS work split off of registry master altogether
o Helpful to performance
o Complicates failover
o Need some more Slony changes to properly support 

failover with multiple origins :-(



In Closing...

• Clustering is complex to manage
• Requires discipline, regardless of method
• Slony has costs & benefits vs built-in WAL
• Work is ongoing on Slony - v2.1 next week!



Questions?
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