
Slony versus Developers

Christopher Browne
Afilias Canada

Postgres Open 2011

Agenda

• Overview of replication systems
• How does Slony work?
• Changes Slony Can't Capture
• Clever things we do with Slony

Overview of Replication Systems

• What is replication?
o Dynamically duplicating activity from one DB into another

DB
 INSERTs
 UPDATEs
 DELETEs

Why Replication?

• Failover
o Includes “avoiding failure”: maintenance

• Division of work
o load balancing
o doing different work on a replica

• Fast upgrades
o Create replica on new version, “fail” over

Major Technologies

• Transaction log (WAL) capture
o Built-in for Postgres 8.0+, steadily improving...

• Trigger-based replication
o Slony, Londiste, Bucardo, eRServer...

• Statement capture
o Exists on DB2, MySQL(tm), not on Postgres
o Problematic

 Nondeterministic updates, interleaving

WAL Rep - Shortcomings

• ZERO variation of schema on replica
o Indices on replicas - inconvenience or fatal?
o No altered behavior on replicas - e.g. - triggers

• Pure read-only access
o Reports cannot use temporary tables

• No good for upgrades
o Can't replicate across versions or architectures

Compare to Slony

• Complex to
configure

• Clusters fragile –
more moving parts

• DDL not replicated
automatically

• ~15% write perf.
degradation

• Sophisticated
failover options

• Mods possible on
subscribers

• Concurrent use of
subscribers

• Fine for rapid
Postgres upgrade

Strength = Weakness

• WAL is below-the-
water magic

• Developers aren't
likely to accidentally
touch anything
below the waterline

• Slony uses visible
database features

• Developers might
accidentally change
stuff out from under
Slony

How does Slony work?

• Slonik – configuration tool - SQL-ish
language

• Slon – C daemon for each node
• Slony Schema

o Configuration & state in DB tables
o Stored functions used by slon/slonik

• Triggers on each replicated table capturing
INSERT/UPDATE/DELETE

Replication Trigger Functions

• log_trigger('cluster', table_id, 'kvkkvk')
o Captures INSERT/UPDATE/DELETE + txid + sequence
o Indirect changes also work:

 Stored functions that do INSERT/UPDATE/DELETE
fire log_trigger

 Triggers that fire stored functions …

• denyaccess()
o prevents corrupting replica

What's in a SYNC?

• active XID
• List of O/S XIDs: Active Transactions

800701

800750

800772

800824

800925
801197

801165

MinXID
800701

MaxXID
801197

801025

SYNC 1, 48752

Bank Reconciliation

• Outstanding transactions list, end of last
month

• Start of Month
• Transactions on our books this month
• Outstanding transactions list, end of this

month

Slony/Londiste Replication

• Outstanding transactions list, end of last
SYNC/Tick point

• Start of new SYNC/Tick
• Transactions issued during this SYNC
• Outstanding transactions list, end of this

SYNC/Tick

Devs Challenge: Schema Change

• New table? Not too hard...
o Use psql to load DDL on all nodes
o CREATE SET
o SET ADD TABLE/SEQUENCE
o SUBSCRIBE SET
o Can be routinely done while system active

• Easier with WAL replication
o It just replicates everything...

Schema Modification II

• ALTER TABLE
o Slony can't capture this automatically
o Must set up a script to run via slonik EXECUTE SCRIPT
o Requires locks on tables, which often mandates outages
o Failure to use EXECUTE SCRIPT likely to cause failure

of the cluster!!!
• WAL replication...

o Just replicates... Everything...

Changes NOT Capturable by
Slony

• ALTER TABLE
• CREATE TABLE
• DROP TABLE
• TRUNCATE TABLE *(well, 'til PG 8.4)
• Capturing ALTER TABLE is Very Hard

WRONG Upgrade Approach

• Write a program embedding DDL changes
o If run directly, it will break replication badly
o If program queries schema to figger out changes, DBAs

mayn't be able to figger out what should be in EXECUTE
SCRIPT

o DBAs cannot control changes going into production,
perhaps inducing failure of S-O, SAS 70, ISO9K audit

o People get fired. (Or perhaps should be.)

What are these standards?!?

• Sarbanes Oxley - legal response to Enron
• SAS 70 - Service Organization Audit
• ISO 27001 - Information Security Standard
• ISO 9001 - Quality Management Systems

Sorts of things involved

• Verifying that processes are documented
o Do changes get deployed in controlled

ways?
o Can all changes be traced back to

establish they were properly controlled?

Audit Mechanisms

• Ticketing system (RT, Bugzilla, Mantis, ...)
• System level logging

o Unix logs, Postgres logs
• Policies

o Who's allowed access?
o Documented processes to implement

changes (create user, alter schema,...)
• Sometimes, capture audit logs in DB

The point

• They won't tell you what your policies
should be

• They want you to have policies
•Written down
•Evaluable
•Evaluable so that they can audit that
they have been applied

Trigger-Based Performance Wins

• There's a performance win to be had versus
WAL-based

• Essentially in that it's easy to do consistent
queries against a replica
o With WAL, need to manage vacuum on

the master to avoid data loss
o With Slony, no special management is

needed

Why WAL has a problem here

• Replica is tracking master... OK!
• You start running a 5 hour query against replica...
• Vacuum runs on master, trims old data.
• WAL for that vacuum replicates... OOPS!!!
• Workaround: Open a transaction on the master that

runs for 5 hours... Ick!!! :-(
• Alternative: hot_standby_feedback, if on 9.1.

o Still "icky" - holds onto data on master for 5h :-(

Clever(ish) Uses of Slony

• Data Capture on Replicas
o WHOIS Cache Management
o DNS Change Capture

 Cannot be done without “trigger” approach!
o Eliminates performance "hit" on master node

WHOIS Cache

• WHOIS service feeds off a replica
• Uses cache table containing constructed

WHOIS record
• Cache invalidation triggers on replica

o On UPDATE/DELETE on domain/host/contact
o Capture ID of object for cache manager to trim from cache
o ZERO performance impact against master

DNS Processing

• Replica has triggers on crucial tables
• Capture object IDs whenever interesting

objects are modified
• DNS state recomputed based on objects

that have been modified
• ZERO processing cost on master node

DNS - Quasi-MultiMaster

• DNS Master != Registry Master
o DNS work split off of registry master altogether
o Helpful to performance
o Complicates failover
o Need some more Slony changes to properly support

failover with multiple origins :-(

In Closing...

• Clustering is complex to manage
• Requires discipline, regardless of method
• Slony has costs & benefits vs built-in WAL
• Work is ongoing on Slony - v2.1 next week!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

