
NoSQL On ACID
October 21, 2014

© 2014 EnterpriseDB Corporation. All rights reserved. 2

• Where did NoSQL come from?

− Where all cool tech stuff comes from – Internet companies

• Why did they make NoSQL?

− To support huge data volumes and evolving demands for ways to
work with new data types

• What does NoSQL accomplish?

− Enables you to work with new data types: email, mobile interactions,
machine data, social connections

− Enables you to work in new ways: incremental development and
continuous release

• Why did they have to build something new?

− There were limitations to most relational databases

Let’s Ask Ourselves, Why NoSQL?

© 2014 EnterpriseDB Corporation. All rights reserved. 3

NoSQL: Real-world Applications

• Emergency Management System

− High variability among data sources required high schema flexibility

• Massively Open Online Course

− Massive read scalability, content integration, low latency

• Patient Data and Prescription Records

− Efficient write scalability

• Social Marketing Analytics

− Map reduce analytical approaches

Source: Gartner, A Tour of NoSQL in 8 Use Cases,

 by Nick Heudecker and Merv Adrian, February 28, 2014

© 2014 EnterpriseDB Corporation. All rights reserved. 4

• HSTORE

− Key-value pair

− Simple, fast and easy

− Postgres v 8.2 – pre-dates many NoSQL-only solutions

− Ideal for flat data structures that are sparsely populated

• JSON

− Hierarchical document model

− Introduced in Postgres 9.2, perfected in 9.3

• JSONB

− Binary version of JSON

− Faster, more operators and even more robust

− Postgres 9.4

Postgres’ Response

© 2014 EnterpriseDB Corporation. All rights reserved. 5

• Supported since 2006, the HStore
contrib module enables storing
key/value pairs within a single
column

• Allows you to create a schema-less,
ACID compliant data store within
Postgres

Postgres: Key-value Store

•Combines flexibility with ACID compliance

• Create single HStore column and
include, for each row, only those keys
which pertain to the record

• Add attributes to a table and query
without advance planning

© 2014 EnterpriseDB Corporation. All rights reserved. 6

• Create a table with HSTORE field

CREATE TABLE hstore_data (data HSTORE);

• Insert a record into hstore_data

INSERT INTO hstore_data (data) VALUES (’

"cost"=>"500",

"product"=>"iphone",

"provider"=>"apple"');

• Select data from hstore_data

SELECT data FROM hstore_data ;

--

"cost"=>"500”,"product"=>"iphone”,"provider"=>"Apple"

(1 row)

HSTORE Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 7

• JSON is the most popular
data-interchange format on the web

• Derived from the ECMAScript
Programming Language Standard
(European Computer Manufacturers
Association).

• Supported by virtually every
programming language

• New supporting technologies
continue to expand JSON’s utility

− PL/V8 JavaScript extension

− Node.js

• Postgres has a native JSON data type (v9.2) and a JSON parser
and a variety of JSON functions (v9.3)

• Postgres will have a JSONB data type with binary storage and
indexing (coming – v9.4)

Postgres: Document Store

© 2014 EnterpriseDB Corporation. All rights reserved. 8

• Wherever is JAVA Script. especially Browser.

• Most of Languages Support it.

• Node.Js is becoming popular.

• Lighter and more compact than XML.

• Most application don't need richer structure like XML.

• Flexible Structure.

• Due to its flexible Structure, good data type for
NoSQL.

Why JSON

© 2014 EnterpriseDB Corporation. All rights reserved. 9

• Creating a table with a JSONB field

CREATE TABLE json_data (data JSONB);

• Simple JSON data element:

{"name": "Apple Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true,
"warranty_years": 1}

• Inserting this data element into the table json_data

INSERT INTO json_data (data) VALUES

(' {"name": "Apple Phone",

"type": "phone",

"brand": "ACME",

"price": 200,

"available": true,

"warranty_years": 1

} ');

JSON Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 10

• JSON data element with nesting:

{"full name": "John Joseph Carl Salinger",

"names":

 [

 {"type": "firstname", "value": "John"},

 {"type": "middlename", "value": "Joseph"},

 {"type": "middlename", "value": "Carl"},

 {"type": "lastname", "value": "Salinger"}

]

}

JSON Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 11

SELECT DISTINCT

data->>'name' as products

FROM json_data;

 products

 Cable TV Basic Service Package

 AC3 Case Black

 Phone Service Basic Plan

 AC3 Phone

 AC3 Case Green

 Phone Service Family Plan

 AC3 Case Red

 AC7 Phone

A simple query for JSON data

This query does not
return JSON data – it
returns text values
associated with the
key ‘name’

© 2014 EnterpriseDB Corporation. All rights reserved. 12

SELECT data FROM json_data;

data

--

 {"name": "Apple Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true,
"warranty_years": 1}

A query that returns JSON data

This query returns the JSON data in its
original format

© 2014 EnterpriseDB Corporation. All rights reserved. 13

• 1. Number:
− Signed decimal number that may contain a fractional part and may use exponential notation.
− No distinction between integer and floating-point

• 2. String
− A sequence of zero or more Unicode characters.
− Strings are delimited with double-quotation mark
− Supports a backslash escaping syntax.

• 3. Boolean
− Either of the values true or false.

• 4. Array
− An ordered list of zero or more values,
− Each values may be of any type.
− Arrays use square bracket notation with elements being comma-separated.

• 5. Object
− An unordered associative array (name/value pairs).
− Objects are delimited with curly brackets
− Commas to separate each pair
− Each pair the colon ':' character separates the key or name from its value.
− All keys must be strings and should be distinct from each other within that object.

• 6. null
− An empty value, using the word null

JSON Data Types
JSON is defined per RFC – 7159
For more detail please refer
http://tools.ietf.org/html/rfc7159

© 2014 EnterpriseDB Corporation. All rights reserved. 14

{
 "firstName": "John", -- String Type
 "lastName": "Smith", -- String Type
 "isAlive": true, -- Boolean Type
 "age": 25, -- Number Type
 "height_cm": 167.6, -- Number Type
 "address": { -- Object Type
 "streetAddress": "21 2nd Street”,
 "city": "New York”,
 "state": "NY”,
 "postalCode": "10021-3100”
 }
 "phoneNumbers": [-- Object Array
 { -- Object
 "type": "home”,
 "number": "212 555-1234”
 },
 {
 "type": "office”,
 "number": "646 555-4567”
 }
],
 "children": [],
 "spouse": null -- Null
}

JSON Data Type Example

© 2014 EnterpriseDB Corporation. All rights reserved. 15

History of JSON in PostgreSQL

© 2014 EnterpriseDB Corporation. All rights reserved. 16

• JSON could only be stored as simple text.

• Did not have structure Validation.

• Did not have Supported functions/operated

• Application had to do most of work for

− Validation

− Verification

− Extraction

History: JSON – Before 9.2

© 2014 EnterpriseDB Corporation. All rights reserved. 17

• New data type JSON.

• Data can also be stored as text.

• Validate stored value is valid JSON.

• Proved following two supported functions:

− array_to_json(anyarray [, pretty_bool])

− row_to_json(record [, pretty_bool])

• Missing feature:

− JSON processing was missing

− User has to use PLV8, PLPerl etc..

History: JSON – In 9.2

© 2014 EnterpriseDB Corporation. All rights reserved. 18

• Add operators and functions to extract elements from
JSON values

− Allow JSON values to be converted into records.

− Add functions to convert scalars, records, and hstore values to JSON

• Functions honour casts to JSON for non built-in types.

• New functions for HSTORE to JSON

− hstore_to_json(hstore)

− hstore_to_json_loose(hstore).

• Parser exposed for use by other modules such as
extensions as an API.

History: JSON – In 9.3

© 2014 EnterpriseDB Corporation. All rights reserved. 19

• extraction operators:

− -> fetch an array element or object member as json

− json arrays are 0 based, unlike SQL arrays

− '[4,5,6]'::json->2 6⟹
− '{"a":1,"b":2}'::json->'b' 2⟹

• 9.3 extraction operators:

− ->> fetch an array element or object member as text

− '["a","b","c"]'::json->2 c ⟹
− Instead of "c"

Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 20

• JSON Extraction Functions:

− json_extract_path(json, VARIADIC path_elems text[]);

− json_extract_path_text(json, VARIADIC path_elems
text[]);

• Same as #> and #>> operators, but you can pass the path
as a variadic array

• json_extract_path('{"a":[6,7,8]}','a','1') 7⟹

Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 21

• 9.3 turn JSON into records:

• CREATE TYPE x AS (a int, b int);

• SELECT * FROM json_populate_record(null::x,
'{"a":1,"b":2}', false);

• SELECT * FROM
json_populate_recordset(null::x,'[{"a":1," b":2},
{"a":3,"b":4}]', false);

Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 22

• 9.3 turn JSON into key/value pairs
● SELECT * FROM json_each('{"a":1,"b":"foo"}')
● SELECT * FROM json_each_text('{"a":1,"b":"foo"}')

• Deliver columns named “key” and “value”

Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 23

• 9.3 get keys from JSON object:

• SELECT * FROM
json_object_keys('{"a":1,"b":"foo"}')

• 9.3 JSON array processing:

• SELECT json_array_length('[1,2,3,4]');

• SELECT * FROM json_array_elements('[1,2,3,4]')

Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 24

• JSON
− New JSON creation functions (json_build_object, json_build_array)
− json_typeof – returns text data type (‘number’, ‘boolean’, …)

• JSONB data type
− Canonical representation

− Whitespace and punctuation dissolved away
− Only one value per object key is kept
− Last insert wins
− Key order determined by length, then bytewise comparison

− Equality, containment and key/element presence tests
− New JSONB creation functions
− Smaller, faster GIN indexes
− jsonb subdocument indexes

− Use “get” operators to construct expression indexes on subdocument:
− CREATE INDEX author_index ON books USING GIN ((jsondata ->

'authors'));
− SELECT * FROM books WHERE jsondata -> 'authors' ? 'Carl

Bernstein'

JSON 9.4 – New Operators and Functions

© 2014 EnterpriseDB Corporation. All rights reserved. 25

• New json creation functions

• New utility functions

• jsonb type

• Efficient operations Indexable Canonical

9.4 Features Set:

© 2014 EnterpriseDB Corporation. All rights reserved. 26

• json_object_agg(“any”, “any”)

• Turn a set of key value pairs into a json object

• SELECT json_object_agg(name, population) from
cities;
− { “Smallville”: 300, “Metropolis”: 1000000}

9.4 Features – new json aggregate

© 2014 EnterpriseDB Corporation. All rights reserved. 27

• json_build_object(VARIADIC “any”)

• json_build_array(VARIADIC “any”)

• json_object(text[])

• json_object(keys text[], values text[])

9.4 Features – json creation functions

© 2014 EnterpriseDB Corporation. All rights reserved. 28

• SELECT json_build_object('a',1,'b',true)
− {“a”: 1, “b”: true}

• SELECT json_build_array('a',1,'b',true)
− [“a”, 1, “b”, true]

• SELECT json_object(array['a','b','c','d']

• Or SELECT json_object(array[['a','b'],['c','d']]

• Or SELECT
json_object(array['a','c'],array['b','d'])
− {“a”:”b”, “c”:”d”}

9.4 Features – json creation functions
(Examples)

© 2014 EnterpriseDB Corporation. All rights reserved. 29

• json_typeof(json) returns text Result is one of:

− 'object’

− 'array’

− 'string’

− 'number'

− 'boolean'

− 'null’

− Null

9.4 features – json_typeof

© 2014 EnterpriseDB Corporation. All rights reserved. 30

• Accepts the same inputs as json

• Uses the 9.3 parsing API

• Checks Unicode escapes, especially use of surrogate
pairs, more thoroughly than json.

• Representation closely mirrors json syntax

9.4 features – jsonb type

© 2014 EnterpriseDB Corporation. All rights reserved. 31

• Whitespace and punctuation dissolved away

• Only one value per object key is kept

• Last one wins.

• Key order determined by length, then bytewise
comparison

9.4 Features – jsonb canonical
representation

© 2014 EnterpriseDB Corporation. All rights reserved. 32

• Has the json operators with the same semantics:
● -> ->> #> #>>

• Has standard equality and inequality operators
● = <> > < >= <=

• Has new operations testing containment, key/element
presence

● @> <@ ? ?| ?&

9.4 Features – jsonb operators

© 2014 EnterpriseDB Corporation. All rights reserved. 33

• Comparison is piecewise

− Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

• Array with n elements > array with n - 1 elements

• Not particularly intuitive

• Not ECMA standard ordering, which is possibly not
suitable anyway

9.4 Features – jsonb equality and
inequality

© 2014 EnterpriseDB Corporation. All rights reserved. 34

• jsonb has all the json processing functions, with the
same semantics

• i.e. functions that take json arguments

• Function names start with jsonb_ instead of json_

• jsonb does not have any of the json creation functions

• i.e. functions that take non-json arguments and output
json

• Workaround: cast result to jsonb

9.4 features – jsonb functions

© 2014 EnterpriseDB Corporation. All rights reserved. 35

• 2 ops classes for GIN indexes

• Default supports contains and exists operators:

− @> ? ?& ?|

• Non-default ops class jsonb_path_ops only supports

− @> operator

− Faster

− Smaller indexes

9.4 features – jsonb indexing

© 2014 EnterpriseDB Corporation. All rights reserved. 36

• Use “get” operators to construct expression indexes on
subdocument:

• CREATE INDEX author_index ON books USING GIN ((jsondata
-> 'authors'));

• SELECT * FROM books WHERE jsondata -> 'authors' ? 'Carl
Bernstein'

9.4 features – jsonb subdocument indexes

© 2014 EnterpriseDB Corporation. All rights reserved. 37

PLV8

Java Script Language In database

© 2014 EnterpriseDB Corporation. All rights reserved. 38

• PLV8 is a shared library that provides a PostgreSQL
procedural language powered by

• V8 JavaScript Engine.

• Language you can write in your JavaScript function that
is callable from SQL.

PLV8: V8 Engine Java Script language

© 2014 EnterpriseDB Corporation. All rights reserved. 39

• Requires g++ version 4.5.1 or 4.4.x

• For Installation of PLV8, we need V8 engine on server

− V8 JavaScript Engine is an open source JavaScript engine developed
by Google for the Google Chrome web browser.

• To install V8, you can use RPMS:

− v8-devel-3.14.5.10-9.el6.x86_64

− v8-3.14.5.10-9.el6.x86_64

• OR

• Using source code.

PLV8: Installation

© 2014 EnterpriseDB Corporation. All rights reserved. 40

• cd ~/build

• git clone https://code.google.com/p/plv8js/

• cd plv8js

• make

• make install

• psql -d dbname -c "CREATE EXTENSION plv8"

PLV8: Installation

© 2014 EnterpriseDB Corporation. All rights reserved. 41

CREATE OR REPLACE FUNCTION plv8_test(keys text[], vals
text[]) RETURNS

 text AS $$

 var o = {};

 for(var i=0; i<keys.length; i++){

 o[keys[i]] = vals[i];

 }

 return JSON.stringify(o);

$$ LANGUAGE plv8 IMMUTABLE STRICT;

• SELECT plv8_test(ARRAY['name', 'age'], ARRAY['Tom',
'29']);

PLV8: Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 42

CREATE TYPE rec AS (i integer, t text);

CREATE FUNCTION set_of_records() RETURNS SETOF rec AS

$$

// plv8.return_next() stores records in an internal tuplestore,

// and return all of them at the end of function.

 plv8.return_next({ "i": 1, "t": "a" });

 plv8.return_next({ "i": 2, "t": "b" });

 // You can also return records with an array of JSON.

 return [{ "i": 3, "t": "c" }, { "i": 4, "t": "d" }];

$$

LANGUAGE plv8;

PLV8: Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 43

SELECT * FROM set_of_records();

 i | t

---+---

 1 | a

 2 | b

 3 | c

 4 | d

(4 rows)

PLV8: Examples

© 2014 EnterpriseDB Corporation. All rights reserved. 44

• plv8.elog(elevel, ...)

• Function print messages to server and/or client logs
just like as RAISE in PL/pgSQL

• Acceptable elevels are

− DEBUG[1-5],

− LOG,

− INFO,

− NOTICE,

− WARNING and

− ERROR.

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 45

• plv8.execute(sql [, args])

• Execute SQL statements and retrieve the result. "args"
is an optional argument that replaces $n placeholders
in "sql".

• Example:

• var json_result = plv8.execute('SELECT * FROM tbl');

• var num_affected = plv8.execute('DELETE FROM tbl WHERE
price > $1', [1000]);

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 46

• plv8.prepare(sql, [, typenames])

• Create a prepared statement. The typename parameter is
an array where each element is a string to indicate
PostgreSQL type name for bind parameters. Returned
value is an object of PreparedPlan.

• object must be freed by plan.free() before leaving the
function.

• Example:

• var plan = plv8.prepare('SELECT * FROM tbl WHERE col =
$1', ['int']);

• var rows = plan.execute([1]);

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 47

• PreparedPlan.execute([args])

• args parameter is as plv8.execute(), and

• can be omitted if the statement doesn't have parameters
at all.

• The result of this method is same as in plv8.execute().

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 48

• PreparedPlan.cursor([args])

• Open a cursor from the prepared statement.

• args parameter is as plv8.execute(), and

• can be omitted if the statement doesn't have parameters
at all.

• The returned object is of Cursor.

• It must be closed by Cursor.close() before leaving the
function.

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 49

PreparedPlan.cursor([args])

var plan = plv8.prepare('SELECT * FROM tbl WHERE col = $1',
['int']);

var cursor = plan.cursor([1]);

var sum = 0, row;

while (row = cursor.fetch()) {

 sum += row.num;

}

cursor.close();

plan.free();

return sum;

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 50

• PreparedPlan.free()

− Free the prepared statement.

• Cursor.fetch()

− Fetch a row from the cursor and return as an object (note: not an array.)
Fetching more than one row, and move() aren't currently implemented.

• Cursor.close()

− Close the cursor.

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 51

• plv8.subtransaction(func)

• Function runs the argument function within a
sub-transaction.

• Needed when you want multiple “execute(query)” commands
to be run atomically.

• If one of the statements fails then everything which is
run in this function will be rolled back.

• Note: if an exception is thrown from the subtransaction
function, the exception goes out of subtransaction(),
so you'll typically need another try-catch block
outside.

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 52

• plv8.subtransaction(func)

• Example:

try{

 plv8.subtransaction(function(){

 plv8.execute("INSERT INTO tbl VALUES(1)"); -- should
be rolled back!

 plv8.execute("INSERT INTO tbl VALUES(1/0)");-- occurs
an exception

 });

} catch(e) {

 ... do fall back plan ...

}

PLV8: Built in functions

© 2014 EnterpriseDB Corporation. All rights reserved. 53

• JSON is naturally
integrated with ANSI SQL
in Postgres

• JSON and SQL queries
use the same language, the
same planner, and the same ACID compliant transaction
framework

• JSON and HSTORE are elegant and easy to use extensions
of the underlying object-relational model

JSON and ANSI SQL - PB&J for the DBA

© 2014 EnterpriseDB Corporation. All rights reserved. 54

SELECT DISTINCT

product_type,

data->>'brand' as Brand,
 data->>'available' as Availability
FROM json_data

JOIN products
ON (products.product_type=json_data.data->>'name')
WHERE json_data.data->>'available'=true;

 product_type | brand | availability
---------------------------+-----------+--------------
 AC3 Phone | ACME | true

JSON and ANSI SQL Example

ANSI SQL

JSON

No need for programmatic logic to combine SQL and
NoSQL in the application – Postgres does it all

© 2014 EnterpriseDB Corporation. All rights reserved. 55

Bridging between SQL and JSON

Simple ANSI SQL Table Definition
CREATE TABLE products (id integer, product_name text);

Select query returning standard data set
SELECT * FROM products;

 id | product_name
----+--------------
 1 | iPhone
 2 | Samsung
 3 | Nokia

Select query returning the same result as a JSON data set
SELECT ROW_TO_JSON(products) FROM products;

 {"id":1,"product_name":"iPhone"}
 {"id":2,"product_name":"Samsung"}
 {"id":3,"product_name":"Nokia”}

© 2014 EnterpriseDB Corporation. All rights reserved. 56

• BSON – stands for
‘Binary JSON’

• BSON != JSONB
− BSON cannot represent an integer or

floating-point number with more than
64 bits of precision.

− JSONB can represent arbitrary JSON values.

• Caveat Emptor!
− This limitation will not be obvious during early stages

of a project!

JSON and BSON

© 2014 EnterpriseDB Corporation. All rights reserved. 57

• JSON/JSONB is more versatile than HSTORE

• HSTORE provides more structure

• JSON or JSONB?

− if you need any of the following, use JSON

− Storage of validated json, without processing or indexing it

− Preservation of white space in json text

− Preservation of object key order Preservation of duplicate object
keys

− Maximum input/output speed

• For any other case, use JSONB

JSON, JSONB or HSTORE?

© 2014 EnterpriseDB Corporation. All rights reserved. 58

JSONB and Node.js - Easy as π

• Simple Demo of Node.js to Postgres cnnection

© 2014 EnterpriseDB Corporation. All rights reserved. 59

• Goal

− Help our customers understand when to chose
Postgres and when to chose a specialty solution

− Help us understand where the NoSQL limits of
Postgres are

• Setup

− Compare Postgres 9.4 to Mongo 2.6

− Single instance setup on AWS M3.2XLARGE
(32GB)

• Test Focus

− Data ingestion (bulk and individual)

− Data retrieval

JSON Performance Evaluation

© 2014 EnterpriseDB Corporation. All rights reserved. 60

Performance Evaluation

Generate 50 Million
JSON Documents

Load into MongoDB 2.6

(IMPORT)

Load into
Postgres 9.4

(COPY)

50 Million individual
INSERT commands

50 Million individual
INSERT commands

Multiple SELECT
statements

Multiple SELECT
statements

T1

T2

T3

© 2014 EnterpriseDB Corporation. All rights reserved. 61

NoSQL Performance Evaluation

Correction to earlier versions:

MongoDB console does not allow for
INSERT of documents > 4K. This
lead to truncation of the MongoDB
size by approx. 25% of all records in
the benchmark.

© 2014 EnterpriseDB Corporation. All rights reserved. 62

• Initial tests confirm that Postgres’ can handle many

NoSQL workloads

• EDB is making the test scripts publicly available

• EDB encourages community participation to

better define where Postgres should be used

and where specialty solutions are appropriate

• Download the source at

https://github.com/EnterpriseDB/pg_nosql_benchmar

k

• Join us to discuss the findings at

http://bit.ly/EDB-NoSQL-Postgres-Benchmark

Performance Evaluations – Next Steps

https://github.com/EnterpriseDB/pg_nosql_benchmark
https://github.com/EnterpriseDB/pg_nosql_benchmark
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

© 2014 EnterpriseDB Corporation. All rights reserved. 63

• Postgres Extended Document Type Developer Kit

• Provides end-to-end Web 2.0 example

• Deployed as free AMI

• First Version
− Postgres 9.4 (beta)

w. HSTORE and JSONB

− Python, Django,
Bootstrap, psycopg2
and nginx

• Next Version:
PL/V8 & Node.js

• Final Version:
Ruby on Rails

PG XDK

AWS AMI PG XDK v0.2 - ami-1616b57e

© 2014 EnterpriseDB Corporation. All rights reserved. 64

• Select PG XDK v0.2 - ami-1616b57e on the AWS Console

• Use
https://console.aws.amazon.com/ec2/v2/home?region=us-e
ast-1#LaunchInstanceWizard:ami=ami-1616b57e

• Works with t2.micro (AWS Free Tier)

• Remember to enable HHTP access in the AWS console

Installing PG XDK

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

© 2014 EnterpriseDB Corporation. All rights reserved. 65

• Structures and standards emerge!

• Data has references (products link to catalogues;
products have bills of material; components appear in
multiple products; storage locations link to ISO
country tables)

• When the database has duplicate data entries, then the
application has to manage updates in multiple places –
what happens when there is no ACID transactional
model?

Structured or Unstructured?
“No SQL Only” or “Not Only SQL”?

© 2014 EnterpriseDB Corporation. All rights reserved. 66

Ultimate Flexibility with Postgres

© 2014 EnterpriseDB Corporation. All rights reserved. 67

• Postgres overcomes many of the standard objections “It
can’t be done with a conventional database system”

• Postgres

− Combines structured data and unstructured data (ANSI SQL and
JSON/HSTORE)

− Is faster (for many workloads) than than the leading NoSQL-only
solution

− Integrates easily with Web 2.0 application development environments

− Can be deployed on-premise or in the cloud

Do more with Postgres – the Enterprise NoSQL Solution

Say yes to ‘Not only SQL’

© 2014 EnterpriseDB Corporation. All rights reserved. 68

• Whitepapers @
http://www.enterprisedb.com/nosql-for-enterprise
− PostgreSQL Advances to Meet NoSQL Challenges (business

oriented)

− Using the NoSQL Capabilities in Postgres (full of code examples)

• Run the NoSQL benchmark
− https://github.com/EnterpriseDB/pg_nosql_benchmark

• Test drive PG XDK

• Check out the jsonbx repo: https://github.com/erthalion/jsonbx

− JSON-modifying operators and functions (hopefully coming to
PostgreSQL 9.5)

Useful Resources

© 2014 EnterpriseDB Corporation. All rights reserved. 69

	NoSQL On ACID
	Let’s Ask Ourselves, Why NoSQL?
	NoSQL: Real-world Applications
	Postgres’ Response
	Postgres: Key-value Store
	HSTORE Examples
	Postgres: Document Store
	Why JSON
	JSON Examples
	Slide 10
	A simple query for JSON data
	A query that returns JSON data
	JSON Data Types
	JSON Data Type Example
	PowerPoint Presentation
	History: JSON – Before 9.2
	History: JSON – In 9.2
	History: JSON – In 9.3
	Operators and Functions
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	JSON 9.4 – New Operators and Functions
	9.4 Features Set:
	9.4 Features – new json aggregate
	9.4 Features – json creation functions
	9.4 Features – json creation functions (Examples)
	9.4 features – json_typeof
	9.4 features – jsonb type
	9.4 Features – jsonb canonical representation
	9.4 Features – jsonb operators
	9.4 Features – jsonb equality and inequality
	9.4 features – jsonb functions
	9.4 features – jsonb indexing
	9.4 features – jsonb subdocument indexes
	Slide 37
	PLV8: V8 Engine Java Script language
	PLV8: Installation
	Slide 40
	PLV8: Examples
	Slide 42
	Slide 43
	PLV8: Built in functions
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	JSON and ANSI SQL - PB&J for the DBA
	JSON and ANSI SQL Example
	Bridging between SQL and JSON
	JSON and BSON
	JSON, JSONB or HSTORE?
	JSONB and Node.js - Easy as π
	JSON Performance Evaluation
	Performance Evaluation
	NoSQL Performance Evaluation
	Performance Evaluations – Next Steps
	PG XDK
	Installing PG XDK
	Structured or Unstructured? “No SQL Only” or “Not Only SQL”?
	Ultimate Flexibility with Postgres
	Say yes to ‘Not only SQL’
	Useful Resources
	Slide 69

