

An object oriented approach to data
driven software development

David Benoit
CTO

Starscale Inc.

benoit@starscale.com

Example of a Data Driven Service: ENUM

● Take a phone number, find a server
– The BEST server for that number

– +1-212-xxx-xxxx goes to Verizon

– +1-212-876-5309 goes to Jenny's personal server

● Many different implementations
– Lots of regular expressions

– A big tree with lots of leaves and not many internal
data nodes

– A big list of prefixes

● The question is simple, the implementation is tricky

What normally happens

string findServer(string num){
 while(true){
 query q = db.query(“SELECT server
 from the_big_list
 where prefix = “ + num);
 if(q.error()){
 throw exception(“db error: “ + q.message());
 }
 if(q.found()){
 return q.row[0].column[0];
 }
 num.removeLastChar();
 }
 throw exception(“not found”);
}

How we should do it

string findServer(string num){
 FindServer::result r = db.enum.findServer(num);
 if(r.error()){
 throw r.exception();
 }
 return r.server();
}

Encapsulation & Data Hiding: not a new idea

“The object-oriented approach encourages the
programmer to place data where it is not directly
accessible by the rest of the program. Instead, the
data is accessed by calling specially written
functions, commonly called methods, which are
either bundled in with the data or inherited from
"class objects." These act as the intermediaries for
retrieving or modifying the data they control.”

– Wikipedia: Object Oriented Programming

Sample: A Simple Wiki

● Simple pages
– Content

– Creation info

– Modification info

● Simple permissions
– A simple list of who can modify a page

● Account Management functionality already exists
– We can leverage that

– Think of it as another object we can use

Schema: Pages

create table wiki."Pages" (
 -- The unique database id of this page

 "PageId" bigserial not null,

 -- The content of the page, null if removed.

 "Content" text null,

 -- The date this page was added to the system

 "CreatedOn" timestamptz not null,

 -- The id of administrator to create the page

 "CreatedBy" bigint not null,

 -- The date this page was last updated

 "UpdatedOn" timestamptz not null,

 -- The id of last administrator to set the page

 "UpdatedBy" bigint not null,

 -- The revision count for this page, starting at 1 per page

 "Revision" bigint not null
);

Schema: Permissions

create table wiki."Permissions" (
 -- The member associated with these permissions

 "MemberId" bigint not null,

 -- True if this member is an admin

 "Admin" boolean not null,

 -- The pages to which this member has permission to write.

 -- Empty if none. Does not apply for admins

 "Pages" bigint[] not null,

 -- The date this permission was last updated

 "UpdatedOn" timestamptz not null,

 -- The id of last administrator to set this permission

 "UpdatedBy" bigint not null

);

Constraints

alter table wiki."Pages" add constraint "Pages_PK"

unique ("PageId");

alter table wiki."Pages" add constraint "Pages_FK1_Members"

foreign key ("CreatedBy") references am."Members" ("MemberId");

alter table wiki."Pages" add constraint "Pages_FK2_Members"

foreign key ("UpdatedBy") references am."Members" ("MemberId");

alter table wiki."Permissions" add constraint "Permissions_FK1_Members"

foreign key ("MemberId") references am."Members" ("MemberId");

alter table wiki."Permissions" add constraint "Permissions_FK2_Members"

foreign key ("UpdatedBy") references am."Members" ("MemberId");

If this was an OO language, that would be...

 “private”
● These details are necessary, but they are details
● We don't need to know how it is implemented
● We don't care how it is implemented

– Not all the time

● We don't want to be burdened if there are changes

● What would be “public”?

The Interface

● The stuff we want to do:
– GetPage(num)

– SetPage(num, content)

● Take some input, perform an action, return a result
– Or many!

● No exposure of the internal data representation
● No ability to do anything else
● Related methods are in the same schema

– Think of these like objects or classes

GetPage

GetPage::Status GetPage(integer id)
GetPage::Status {

Success

Failure

PageNotFound

}

Results::Page(1) {

Content

Created { On, By }

Updated { On, By }

Revision

}

GetPage

SetPage::Status SetPage(integer id, text content,

 integer baseRevision)
GetPage::Status {

Success

Failure

PageNotFound

PermissionDenied

MidAirCollission

}

No Results

You have to know too much

● Does the member have permission?
● Does the page exist?
● Was a conflicting change made?
● Is the schema the same?

● Things are never as simple as

select content from pages where id = 4;

The Stub
create or replace function

wiki."getPage" (_memberId bigint,
 _pageId bigint)
returns int
security definer
language plpgsql
as $$
declare
 _r1 refcursor := 'RS 1';
 _edit boolean;

begin
...

 -- Return the info.
 open _r1 for
 select

...
 -- All ok
 return 0;
end;
$$;

Our Workflow

Concept
Group

Related
Ideas

Determine
Input

Parameters

Determine
Status
Codes

Write
It

Down

Hit
“GO”

C++
Library

HTML
Docs

pgsql
Function

Stubs

Test
Harness

Division of Responsibility

● The application
developer writes the
application

● References the HTML
documentation

● Can write fake
procedures for testing

● The DBA writes the
stored procedures

● References the HTML
documentation

● Uses the testing
harness to verify the
implementation

More wins

● Precompilation
– Most dataservers will pre-compile the code in a

function, allowing for faster execution and
checking ahead of time

– Bad syntax, incorrect table/column names, etc. are
all compile-time checks instead of run-time

– Statement caching, optimization, etc.

● Security
– Drop all permissions on all tables

– Grant execute to the application user

– Arguments passed as variables; aren't interpreted

Versioning

● Prepare for change; it is inevitable
● Two options

– Change the API and update all applications

– Allow for multiple versions of the same methods

● What you do depends on what you need
● We have done both

– Legacy applications that we don't want to change,
we leave alone and provide a legacy version of
the function

– New applications get all the new features

Testing

● Test the entire interface

– Preconditions, postconditions, return values
– etc.

const GetPage get(userId, p1);

get.success();

const GetPage::RowOfPage &row = get.getPage(0);

BOOST_REQUIRE_EQUAL(row.getContent(), "the first page");

BOOST_REQUIRE_EQUAL(row.getCreatedBy(), "User 001");

BOOST_REQUIRE_EQUAL(row.getUpdatedBy(), "User 002");

BOOST_REQUIRE_EQUAL(row.getRevision(), 3);

Is this enough?

● How can we make this better
● What other features should we explore
● Should this evolve to be the “standard” Application

Interface?
● Can this generally act as a “high level” language for

databases?

Questions?

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

