
Trees and More in SQL
Common Table Expressions
FOSDEM 2009

Copyright © 2009
David Fetter david@fetter.org
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org

Some Approaches

External Processing

Functions and Stored Procedures

Materialized Path Enumeration

Nested Set

External Processing

Pros:

Lots of Language Choices

Cons:

Scaling

No Relational Operators

Functions and Stored Procedures

Pros:

Easy to visualize

Easy to write

Cons:

Scaling

Hard to do relational operators

Materialized Path Enumeration

Pros:

Easy to visualize

Cons:

DDL for each hierarchy

Full-table changes on write

Hard to do relational operators

Nested Sets

Pros:

Easy to manipulate on SELECT

Sounds cool

Endorsed by a famous bald guy

Cons:

DDL for each hierarchy

Full-table changes on write

Hard to do relational operators

Thanks to:
The ISO SQL Standards Committee

Yoshiyuki Asaba

Ishii Tatsuo

Jeff Davis

Gregory Stark

Tom Lane

etc., etc., etc.

SQL Standard

Common Table Expressions (CTE)

Recursion

Recursion in General

Initial Condition

Recursion step

Termination condition

E1 List Table
CREATE TABLE employee(
 id INTEGER NOT NULL,
 boss_id INTEGER,
 UNIQUE(id, boss_id)/*, etc., etc. */
);

INSERT INTO employee(id, boss_id)
VALUES(1,NULL), /* El capo di tutti capi */
(2,1),(3,1),(4,1),
(5,2),(6,2),(7,2),(8,3),(9,3),(10,4),
(11,5),(12,5),(13,6),(14,7),(15,8),
(1,9);

Tree Query Initiation

WITH RECURSIVE t(node, path) AS (
 SELECT id, ARRAY[id] FROM employee WHERE boss_id IS NULL
 /* Initiation Step */
UNION ALL
 SELECT e1.id, t.path || ARRAY[e1.id]
 FROM employee e1 JOIN t ON (e1.boss_id = t.node)
 WHERE id NOT IN (t.path)
)
SELECT
 CASE WHEN array_upper(path,1)>1 THEN '+-' ELSE '' END ||
 REPEAT('--', array_upper(path,1)-2) ||
 node AS "Branch"
FROM t
ORDER BY path;

Tree Query Recursion

WITH RECURSIVE t(node, path) AS (
 SELECT id, ARRAY[id] FROM employee WHERE boss_id IS NULL
UNION ALL
 SELECT e1.id, t.path || ARRAY[e1.id] /* Recursion */
 FROM employee e1 JOIN t ON (e1.boss_id = t.node)
 WHERE id NOT IN (t.path)
)
SELECT
 CASE WHEN array_upper(path,1)>1 THEN '+-' ELSE '' END ||
 REPEAT('--', array_upper(path,1)-2) ||
 node AS "Branch"
FROM t
ORDER BY path;

Tree Query Termination

WITH RECURSIVE t(node, path) AS (
 SELECT id, ARRAY[id] FROM employee WHERE boss_id IS NULL
UNION ALL
 SELECT e1.id, t.path || ARRAY[e1.id]
 FROM employee e1 JOIN t ON (e1.boss_id = t.node)
 WHERE id NOT IN (t.path) /* Termination Condition */
)
SELECT
 CASE WHEN array_upper(path,1)>1 THEN '+-' ELSE '' END ||
 REPEAT('--', array_upper(path,1)-2) ||
 node AS "Branch"
FROM t
ORDER BY path;

Tree Query Display

WITH RECURSIVE t(node, path) AS (
 SELECT id, ARRAY[id] FROM employee WHERE boss_id IS NULL
UNION ALL
 SELECT e1.id, t.path || ARRAY[e1.id]
 FROM employee e1 JOIN t ON (e1.boss_id = t.node)
 WHERE id NOT IN (t.path)
)
SELECT
 CASE WHEN array_upper(path,1)>1 THEN '+-' ELSE '' END ||
 REPEAT('--', array_upper(path,1)-2) ||
 node AS "Branch" /* Display */
FROM t
ORDER BY path;

Tree Query Initiation
 Branch

 1
 +-2
 +---5
 +-----11
 +-----12
 +---6
 +-----13
 +---7
 +-----14
 +-3
 +---8
 +-----15
 +---9
 +-4
 +---10
 +-9
(16 rows)

Travelling Salesman Problem

Given a number of cities and the costs of travelling
from any city to any other city, what is the least-
cost round-trip route that visits each city exactly
once and then returns to the starting city?

TSP Schema

CREATE TABLE pairs (
 from_city TEXT NOT NULL,
 to_city TEXT NOT NULL,
 distance INTEGER NOT NULL,
 PRIMARY KEY(from_city, to_city),
 CHECK (from_city < to_city)
);

TSP Data
INSERT INTO pairs
VALUES
 ('Bari','Bologna',672),
 ('Bari','Bolzano',939),
 ('Bari','Firenze',723),
 ('Bari','Genova',944),
 ('Bari','Milan',881),
 ('Bari','Napoli',257),
 ('Bari','Palermo',708),
 ('Bari','Reggio Calabria',464),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
) /* Working Table */
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)
AS (/* Distances One Way */
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL /* Distances Other Way */
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Path Initialization Step

paths (
 from_city,
 to_city,
 distance,
 path
)
AS (
 SELECT
 from_city,
 to_city,
 distance,
 ARRAY[from_city] AS "path"
 FROM
 both_ways b1
 WHERE
 b1.from_city = 'Roma'
UNION ALL

TSP Program:
Path Recursion Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6
)
)

TSP Program:
Timely Termination Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6 /* Timely Termination */
)
)

TSP Program:
Filter and Display

SELECT
 path || to_city AS "path",
 distance
FROM
 paths
WHERE
 to_city = 'Roma'
AND
 ARRAY['Milan','Firenze','Napoli'] <@ path
ORDER BY distance, path
LIMIT 1;

TSP Program:
Filter and Display

davidfetter@tsp=# \i travelling_salesman.sql
 path | distance
----------------------------------+----------
 {Roma,Firenze,Milan,Napoli,Roma} | 1553
(1 row)

Time: 11679.503 ms

Hausdorf-Besicovich-
WTF Dimension

WITH RECURSIVE
Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
 SELECT Ix, Iy, X::float, Y::float, X::float, Y::float, 0
 FROM
 (SELECT -2.2 + 0.031 * i, i FROM generate_series(0,101) AS i) AS xgen(x,ix)
 CROSS JOIN
 (SELECT -1.5 + 0.031 * i, i FROM generate_series(0,101) AS i) AS ygen(y,iy)
 UNION ALL
 SELECT Ix, Iy, Cx, Cy, X * X - Y * Y + Cx AS X, Y * X * 2 + Cy, I + 1
 FROM Z
 WHERE X * X + Y * Y < 16::float
 AND I < 100
),

Filter

Zt (Ix, Iy, I) AS (
 SELECT Ix, Iy, MAX(I) AS I
 FROM Z
 GROUP BY Iy, Ix
 ORDER BY Iy, Ix
)

Display

SELECT array_to_string(
 array_agg(
 SUBSTRING(
 ' .,,,-----++++%%%%@@@@#### ',
 GREATEST(I,1)
),''
)
FROM Zt
GROUP BY Iy
ORDER BY Iy;

Return Map

Questions?
Comments?
Straitjackets?

Merci!
Copyright © 2009
David Fetter david@fetter.org
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org

