
PostgreSQL
as a Schemaless Database.

Christophe Pettus
PostgreSQL Experts, Inc.

PgDay FOSDEM 2013

Welcome!

• I’m Christophe.

• PostgreSQL person since 1997.

• Consultant with PostgreSQL Experts, Inc.

• cpettus@pgexperts.com

• thebuild.com

• @xof on Twitter.

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com

What’s on the menu?

• What is a schemaless database?

• How can you use PostgreSQL to store
schemaless data?

• How does do the various schemaless
options perform?

A note on NoSQL.

• Worst. Term. Ever.

• It’s true that all modern schemaless
databases do not use SQL, but…

• Neither did Postgres before it became
PostgreSQL. (Remember QUEL?)

• The defining characteristic is the lack of a
fixed schema.

Schematic.

• A schema is a fixed (although mutable
over time) definition of the data.

• Database to schema (unfortunate term) to
table to field/column/attribute.

• Individual fields can be optional (NULL).

• Adding new columns requires a schema
change.

Rock-n-Roll!

• Schemaless databases store “documents”
rather than rows.

• They have internal structure, but…

• … that structure is per document.

• No fields! No schemas! Make up whatever
you like!

We are not amused.

• Culturally, very different from the glass
house data warehouse model.

• Grew out of the need for persistent object
storage…

• … and impatience with the (perceived)
limitations of relational databases and
object-relational managers.

Let us never speak of this
again.
• There’s a lot to talk about in schemaless vs

traditional relational databases.

• But let’s not.

• Today’s topic: If you want to store
schemaless data in PostgreSQL, how can
you?

• And what can you expect?

What is schemaless data?

• Schemaless does not mean unstructured.

• Each “document” (=record/row) is a
hierarchical structure of arrays and key-
value pairs.

• The application knows what to expect in
one of these…

• … and how to react if it doesn’t get it.

PostgreSQL has you
covered.
• Not one, not two, but three different

document types:

• XML

• hstore

• JSON

• Let’s see what they’ve got.

XML

It seemed like a good idea at the time.

XML

• Been around since the mid-1990s.

• Hierarchical structured data based on
SGML.

• Underlying technology for SOAP and a lot
of other stuff that was really popular for a
while.

• Still super-popular in the Java world.

XML, your dad’s document
language.
• Can specify XML schemas using DTDs.

• No one does this.

• Can do automatic transformations of XML
into other markups using XSLT.

• Only the masochistic do this.

• Let’s not forget the most important use of
XML!

<Server port="8005" shutdown="SHUTDOWN" debug="0">
 <Service name="Tomcat-Standalone">
 <Connector className="org.apache.catalina.connector.http.HttpConnector"
 port="8080" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="10" debug="0" connectionTimeout="60000"/>
 <Engine name="Standalone" defaultHost="localhost" debug="0">
 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="catalina_log." suffix=".txt"
 timestamp="true"/>
 <Realm className="org.apache.catalina.realm.MemoryRealm" />
 <Host name="localhost" debug="0" appBase="webapps" unpackWARs="true">
 <Valve className="org.apache.catalina.valves.AccessLogValve"
 directory="logs" prefix="localhost_access_log." suffix=".txt"
 pattern="common"/>
 <Logger className="org.apache.catalina.logger.FileLogger"
 directory="logs" prefix="localhost_log." suffix=".txt"
 timestamp="true"/>
 <Context path="/examples" docBase="examples" debug="0"
 reloadable="true">
 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="localhost_examples_log." suffix=".txt"
 timestamp="true"/>
 </Context>
 </Host>
 </Engine>
 </Service>
</Server>

Tomcat Configuration Files.

• Built-in type.

• Can handle documents up to 2 gigabytes.

• A healthy selection of XML operators.

• xpath in particular.

• Very convenient XML export functions.

• Great for external XML requirements.

XML Support in
PostgreSQL.

XML Indexing.

• There isn’t any.

• Unless you build it yourself with an
expression index.

• Functionality is great.

• Performance is… we’ll talk about this later.

hstore

The hidden gem of contrib/

hstore

• A hierarchical storage type specific to
PostgreSQL.

• Maps string keys to string values, or…

• … to other hstore values.

• Contrib module; not part of the
PostgreSQL core.

hstore functions

• Lots and lots and lots of hstore functions.

• h->”a” (get value for key a).

• h?”a” (does h contain key a?).

• h@>”a->2” (does key a contain 2?).

• Many others.

hstore indexing.

• Can create GiST and GIN indexes over
hstore values.

• Indexes the whole hierarchy, not just one
key.

• Accelerates @>, ?, ?& and ?| operators.

• Can also build expression indexes.

JSON

All the cool kids are doing it.

JSON

• JavaScript Object Notation.

• JavaScript’s data structure declaration
format, turned into a protocol.

• Dictionaries, arrays, primitive types.

• Originally designed to just be passed into
eval() in JavaScript.

• Please don’t do this.

JSON, the new hotness

• The de facto standard API data format for
REST web services.

• Very comfortable for Python and Ruby
programmers.

• MongoDB’s native data storage type.

JSON? Yeah, we got that.

• JSON type in core as of 9.2.

• Validates JSON going in.

• And… not much else right now.

• array_to_json, row_to_json.

• Lots more coming in 9.3 (offer subject to
committer approval).

JSON Indexing.

• Expression indexing.

• Can also treat as a text string for strict
comparison…

• … which is kind of a weird idea and I’m
not sure why you’d do that.

• But the coolest part of JSON in core is!

PL/V8!

• The V8 JavaScript engine from Google is
available as an embedded language.

• JavaScript deals with JSON very well, as
you’d expect.

• Not part of core or contrib; needs to be
built and installed separately.

PL/V8 ProTips

• Use the static V8 engine that comes with
PL/V8.

• Function is compiled by V8 on first use.

• Now that we got rid of SQL injection
attacks, we now have JSON injection
attacks.

• PL invocation overhead is non-trivial.

Schemaless Strategies

• Create single-field tables with only a
hierarchical type.

• Wrap up the (very simple) SQL to provide
an object API.

• Create indexes to taste

• Maybe extract fields if you need to JOIN.

• Profit!

CREATE OR REPLACE FUNCTION
 get_json_key(structure JSON, key TEXT) RETURNS TEXT
 AS get_json_key
 var js_object = structure;
 if (typeof ej != 'object')
 return NULL;
 return JSON.stringify(js_object[key]);
get_json_key
 IMMUTABLE STRICT LANGUAGE plv8;

CREATE TABLE blog {
 post json
}

CREATE INDEX post_pk_idx ON
 blog((get_json_key(post, ‘post_id’)::BIGINT));

CREATE INDEX post_date_idx ON
 blog((get_json_key(post, ‘post_date’)::TIMESTAMPTZ));

But but but…

• PostgreSQL was not designed to be a
schemaless database.

• Wouldn’t it be better to use a bespoke
database designed for this kind of data?

• Well, let’s find out!

Some Numbers.

When all else fails, measure.

Schemaless Shootout!

• A very basic document structure:

• id, name, company, address1, address2,
city, state, postal code.

• address2 and company are optional
(NULL in relational version).

• id 64-bit integer, all others text.

• 1,780,000 records, average 63 bytes each.

The Competitors!

• Traditional relational schema.

• hstore (GiST and GIN indexes).

• XML

• JSON

• One column per table for these.

• MongoDB

Timing Harness.

• Scripts written in Python.

• psycopg2 2.4.6 for PostgreSQL interface.

• pymongo 2.4.2 for MongoDB interface.

The Test Track.

• This laptop.

• OS X 10.7.5.

• 2.8GHz Intel Core i7.

• 7200 RPM disk.

• 8GB (never comes close to using a fraction
of it).

Indexing Philosophy

• For relational, index on primary key.

• For hstore, index using GiST and GIN (and
none).

• For JSON and XML, expression index on
primary key.

• For MongoDB, index on primary key.

• Indexes created before records loaded.

Your Methodology Sucks.

• Documents are not particularly large.

• No deep hierarchies.

• Hot cache.

• Only one index.

• No joins.

• No updates.

The Sophisticated Database
Tuning Philosophy.
• None.

• Stock PostgreSQL 9.2.2, from source.

• No changes to postgresql.conf

• Stock MongoDB 2.2, from MacPorts.

• Fire it up, let it go.

First Test: Bulk Load

• Scripts read a CSV file, parse it into the
appropriate format, INSERT it into the
database.

• We measure total load time, including
parsing time.

• (COPY will be much much much faster.)

• mongoimport too, most likely.

0

1500

3000

4500

6000

Relational hstore hstore (GiST) hstore (GIN) XML JSON MongoDB

Records/Second

Observations.

• No attempt made to speed up PostgreSQL.

• Synchronous commit, checkpoint tuning,
etc.

• GIN indexes are really slow to build.

• The XML xpath function is probably the
culprit for its load time.

Next Test: Disk Footprint.

• Final disk footprint once data is loaded.

• For PostgreSQL, reported database sizes
from the pg_*_size functions.

• For MongoDB, reported by db.stats().

0

750

1500

2250

Relational hstore hstore (GiST) hstore (GIN) XML JSON MongoDB

Disk Footprint in Megabytes

Data Index

Observations.

• GIN indexes are really big on disk.

• PostgreSQL’s relational data storage is very
efficient.

• None of these records are TOAST-able.

• MongoDB certain likes its disk space.

• padding factor was 1, so it wasn’t that.

Next Test: Query on
Primary Key
• For a sample of 100 documents, query a

single document based on the primary key.

• Results not fetched.

• For PostgreSQL, time of .execute()
method from Python.

• For MongoDB, time of .fetch()
method.

0

100

200

300

400

Relational hstore hstore (GiST) hstore (GIN) XML JSON MongoDB

Fetch Time in Milliseconds

0

3.25

6.5

9.75

13

Relational XML JSON MongoDB

Fetch Time in Milliseconds (<100ms)

0

100

200

300

400

hstore hstore (GiST) hstore (GIN)

Fetch Time in Milliseconds (>100ms)

Observations.

• B-tree indexes kick ass.

• GiST and GIN not even in same league
for simple key retrieval.

• Difference between relational, XML and
JSON is not statistically significant.

• Wait, I thought MongoDB was supposed to
be super-performant. Huh.

Next Test: Query on Name

• For a sample of 100 names, query all
documents with that name.

• Results not fetched.

• Required a full-table scan (except for
hstore with GiST and GIN indexes).

• Same timing methodology.

0

12500

25000

37500

50000

Relational hstore hstore (GiST) hstore (GIN) XML JSON MongoDB

Fetch Time in Milliseconds

0

125

250

375

500

Relational hstore hstore (GiST) hstore (GIN) MongoDB

Fetch Time in Milliseconds (<500ms)

0

12500

25000

37500

50000

XML JSON

Fetch Time in Milliseconds (>500ms)

Observations.

• GiST and GIN accelerate every field, not
just the “primary” key.

• Wow, executing the accessor function on
each XML and JSON field is slow.

• MongoDB’s grotesquely bloated disk
footprint hurts it here.

• Not that there’s anything wrong with that.

Now that we know
this, what do we

know?

Some Conclusions.

• PostgreSQL does pretty well as a
schemaless database.

• Build indexes using expressions on
commonly-queried fields…

• … or use GiST and hstore if you want
full flexibility.

• GIN might well be worth it for other cases.

Some Conclusions, 2.

• Avoid doing full-table scans if you need to
use an accessor function.

• Although hstore’s are not bad compared
to xpath or a PL.

• Seriously consider hstore if you have the
flexibility.

• It’s really fast.

Flame Bait!

• MongoDB doesn’t seem to be more
performant than PostgreSQL.

• And you still get all of PostgreSQL’s
goodies.

• Larger documents will probably continue to
favor PostgreSQL.

• As will larger tables.

Fire Extinguisher.

• You can find workloads that “prove” any
data storage technology is the right answer.

• dBase II included.

• Be very realistic about your workload and
data model, now and in the future.

• Test, and test fairly with real-world data in
real-world volumes.

Thank you!

thebuild.com
@xof

