
1
EnterpriseDB, Postgres Plus and Dynatune are trademarks of
EnterpriseDB Corporation. Other names may be trademarks of their
respective owners. © 2010. All rights reserved.

PostgreSQL at the centre of your dataverse!

PGBR 2011!

Presented by Dave Page!
3rd November 2011!

Who is Dave Page?!

2 © 2011 EnterpriseDB. All rights reserved.

u  Lead developer of pgAdmin

u  postgresql.org webmaster and sysadmin

u  Senior Software Architect at EnterpriseDB, responsible for:

•  PostgreSQL and component Installers!
•  Postgres Enterprise Manager!
•  Postgres Plus Standard Server!
•  PostgreSQL Solution Pack!

u  Member of
•  PostgreSQL Core Team!
•  PostgreSQL Europe Board of Directors!
•  PostgreSQL Community Association of Canada Board of Directors!

Centre of my dataverse?!
u  Embarrassing “marketing moment”

3 © 2011 EnterpriseDB. All rights reserved.

Image credit: NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

Why?!
u  Application integration

u  Cross database/application reporting

u  Data migration

u  Data sharding

u  Database federation

4 © 2011 EnterpriseDB. All rights reserved.

About SQL/MED!

5 © 2011 EnterpriseDB. All rights reserved.

SQL/MED!
u  SQL standard for Management of External Data

u  Defined in ISO/IEC 9075-9:2003

u  Specifies how external data sources are accessed from an SQL
database

6 © 2011 EnterpriseDB. All rights reserved.

Before SQL/MED!
u  Import data into [temporary] tables:

•  COPY!
•  psql scripts!
•  Custom loader programs!

u  Stored functions/procedures:
•  PL/Proxy – primarily intended for advanced partitioning!
•  DBI:Link – Perl project that uses views, functions and rules to make remote

tables appear local!
•  dblink – Contrib module allowing access to remote PostgreSQL servers!

7 © 2011 EnterpriseDB. All rights reserved.

Disadvantages!
u  Custom loader/management code may be required

u  May need need to run batch tasks for incremental imports

u  Data may not be presented as relations, but functions

u  Custom stored functions may be required

u  Different data sources may have different interfaces

8 © 2011 EnterpriseDB. All rights reserved.

With SQL/MED!
u  Data is presented to the user like any other table or relation

u  Standardised set of object types and configuration commands
used to setup and configure a remote data source

u  Integrated credential management ensures usernames and
passwords can be managed securely, for each role

u  Deep integration with PostgreSQL’s planner for improved query
planning and optimisation

9 © 2011 EnterpriseDB. All rights reserved.

Current Limitations!
u  Data is read only

u  Planner limitations:

•  No defined API for qual (WHERE clause) push down  
!

•  No join push down!

u  API deficiency: no simple way to pass complex data from the
planner callback to the executor callbacks

10 © 2011 EnterpriseDB. All rights reserved.

Using SQL/MED!

11 © 2011 EnterpriseDB. All rights reserved.

SQL Objects – Foreign Data Wrapper!
u  Also known as an FDW

u  Defines the “type” or remote data source

u  Consists of:

•  Handler function  
!

•  Validator function (optional) 
!

u  Refers to both the SQL object, and less formally, the binary
code that implements the interface to the remote data source

12 © 2011 EnterpriseDB. All rights reserved.

Relational DBMS FDWs!
u  MySQL

•  Written by Dave Page!
•  https://github.com/dpage/mysql_fdw!

u  ODBC
•  Written by Zheng Yang (GSoC project)!
•  https://github.com/ZhengYang/odbc_fdw 

!

u  Oracle
•  Written by Laurenz Albe!
•  http://pgfoundry.org/projects/oracle-fdw!

13 © 2011 EnterpriseDB. All rights reserved.

NoSQL FDWs!
u  CouchDB

•  Written by Zheng Yang (GSoC project)!
•  https://github.com/ZhengYang/couchdb_fdw 

!
u  Redis

•  Written by Dave Page!
•  Includes experimental qual pushdown for key values!
•  https://github.com/dpage/redis_fdw 

!

14 © 2011 EnterpriseDB. All rights reserved.

File FDWs!
u  CSV

•  Included as an extension with PostgreSQL 9.1!
•  http://www.postgresql.org/docs/9.1/static/file-fdw.html!

u  Text Array
•  Written by Andrew Dunstan!
•  Presents [ragged] CSV files as text[] data!
•  https://github.com/adunstan/file_text_array_fdw!
!

15 © 2011 EnterpriseDB. All rights reserved.

Other FDWs!
u  LDAP

•  Written by Dickson S. Guedes!
•  https://github.com/guedes/ldap_fdw!

u  Twitter
•  Written by Hitoshi Harada!
•  https://github.com/umitanuki/twitter_fdw!
!

16 © 2011 EnterpriseDB. All rights reserved.

Creating an FDW!
u  Create the functions:

CREATE FUNCTION mysql_fdw_handler()

 RETURNS fdw_handler

 AS '$libdir/mysql_fdw'

 LANGUAGE C STRICT;

CREATE FUNCTION mysql_fdw_validator(text[], oid)

 RETURNS void

 AS '$libdir/mysql_fdw'

 LANGUAGE C STRICT;

17 © 2011 EnterpriseDB. All rights reserved.

Creating an FDW!
u  Create the FDW object:

CREATE FOREIGN DATA WRAPPER mysql_fdw

 HANDLER mysql_fdw_handler

 VALIDATOR mysql_fdw_validator;

18 © 2011 EnterpriseDB. All rights reserved.

Creating an FDW!
u  Or… use PostgreSQL 9.1’s EXTENSIONs mechanism:

CREATE EXTENSION mysql_fdw;

19 © 2011 EnterpriseDB. All rights reserved.

SQL Objects – Foreign Server!
u  Defines a specific “server” or source of data, for example:

•  A PostgreSQL database!
•  A MySQL server!
•  A Twitter account!
•  A delimited file  

!
u  Each server uses one FDW. One FDW supports multiple

servers.

20 © 2011 EnterpriseDB. All rights reserved.

Creating a Foreign Server!
u  Create the foreign server object:

CREATE SERVER mysql_svr

 FOREIGN DATA WRAPPER mysql_fdw

 OPTIONS (address '127.0.0.1', port '3306');

u  mysql_fdw supports the following server options:

•  address – The hostname or IP address of the MySQL server (default:

127.0.0.1) 
!

•  port – The port number that the MySQL server is listening on (default: 3306)!

21 © 2011 EnterpriseDB. All rights reserved.

SQL Objects – Foreign Table!
u  Defines a “table” representing data on a foreign server, e.g:

•  A PostgreSQL table or view!
•  A delimited file!
•  An SQL query against a MySQL database  

!
u  Each table uses one foreign server. Each server supports

multiple tables

u  The Foreign Table object may be used in PostgreSQL as a
read-only table, e.g:

SELECT *

 FROM foreign f JOIN local l ON (f.id = l.id)

 ORDER BY f.name

22 © 2011 EnterpriseDB. All rights reserved.

Creating a Foreign Table!
u  Create the foreign table object:

CREATE FOREIGN TABLE tbl (c1 text, c2 text)

 SERVER mysql_svr;

u  mysql_fdw supports the following table options:

•  database – The name of the MySQL database (optional) 

!
•  query – An SQL query to return the desired data  

!
•  table – The name of a table (quoted and qualified if needed) containing the

desired data  
!

Note: Either table or query must be specified, but not both.

23 © 2011 EnterpriseDB. All rights reserved.

SQL Objects – User Mapping!
u  Defines security information used to connect to a foreign server

u  Other options may be specified, if the FDW supports it

u  Each user mapping applies to one server. Each server supports
multiple user mappings

u  User mappings may be defined for “PUBLIC” or individual roles

24 © 2011 EnterpriseDB. All rights reserved.

Creating a User Mapping!
u  Create the user mapping object:

CREATE USER MAPPING FOR dpage

 SERVER mysql_svr

 OPTIONS (username 'dpage', password 'Foo');

u  mysql_fdw supports the following user mapping options:

•  username – the username to use to connect to the MySQL server 

!
•  password – the password corresponding to the username specified!

25 © 2011 EnterpriseDB. All rights reserved.

Writing FDWs!

26 © 2011 EnterpriseDB. All rights reserved.

Requirements – SQL Functions!
u  Handler function

•  Must be written in C!
•  Provides pointers to callback functions in the FDW!

u  Validator function
•  Must be written in C!
•  Optional!
•  Validates options for:!

–  Foreign Data Wrapper!
–  Foreign Servers!
–  Foreign Tables!
–  User Mappings!

27 © 2011 EnterpriseDB. All rights reserved.

Handler Function (pseudo code)!
/*
 * Foreign-data wrapper handler function: return a struct with pointers
 * to my callback routines.
 */

Datum
mysql_fdw_handler(PG_FUNCTION_ARGS)
{

 FdwRoutine *fdwroutine = makeNode(FdwRoutine);

 fdwroutine->PlanForeignScan = mysqlPlanForeignScan;
 fdwroutine->ExplainForeignScan = mysqlExplainForeignScan;

 fdwroutine->BeginForeignScan = mysqlBeginForeignScan;
 fdwroutine->IterateForeignScan = mysqlIterateForeignScan;
 fdwroutine->ReScanForeignScan = mysqlReScanForeignScan;

 fdwroutine->EndForeignScan = mysqlEndForeignScan;

 PG_RETURN_POINTER(fdwroutine);
}

28 © 2011 EnterpriseDB. All rights reserved.

Requirements – SQL Functions!
u  Handler function

•  Must be written in C!
•  Provides pointers to callback functions in the FDW!

u  Validator function
•  Must be written in C!
•  Optional!
•  Validates options for:!

–  Foreign Data Wrapper!
–  Foreign Servers!
–  Foreign Tables!
–  User Mappings!

29 © 2011 EnterpriseDB. All rights reserved.

Validator Function (pseudo code)!
 /*
 * This tends to be a long and boring function, so here’s some pseudo code
 * instead. See https://github.com/dpage/mysql_fdw/blob/master/mysql_fdw.c
 * for a working example.

 */
Datum
mysql_fdw_validator(PG_FUNCTION_ARGS)

{
 List *options_list = untransformRelOptions(PG_GETARG_DATUM(0));
 Oid catalog = PG_GETARG_OID(1); /* Object type – table, user mapping etc. */

 foreach(option, options_list)
 {
 if(!mysqlIsValidOption(option, catalog)

 ereport(ERROR, (errcode(ERRCODE_FDW_INVALID_OPTION_NAME),
 errmsg("invalid option \"%s\"", option->name)));

 /* If the option is valid, we may also want to validate the value… */

 }
}

30 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  PlanForeignScan

•  Plans the foreign scan on the remote server!
•  May or may not actually do anything remotely!
•  Returns cost estimates to the planner!

u  ExplainForeignScan
•  Optionally adds additional data to EXPLAIN output!

u  BeginForeignScan
•  Performs initialisation required for the foreign scan!

31 © 2011 EnterpriseDB. All rights reserved.

PlanForeignScan (pseudo code)!
static FdwPlan *
mysqlPlanForeignScan(Oid foreigntableid, PlannerInfo *root, RelOptInfo *baserel)
{
 /* Connect to the remote server */

 MYSQL *conn = mysql_connect(server, port, username, password);

 /* Get statistics for the remote scan */

 rows = mysql_query(“SELECT count(*) FROM table”);

 /* Set the number of rows in the relation */
 baserel->rows = rows;

 /* Calculate a startup cost for the scan */
 fdwplan->startup_cost = 10;

 if (!IsLocal(server))
 fdwplan->startup_cost += 15;

 /* Finally, calculate the total cost */

 fdwplan->total_cost = rows + fdwplan->startup_cost;

 return fdwplan;
}

32 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  PlanForeignScan

•  Plans the foreign scan on the remote server!
•  May or may not actually do anything remotely!
•  Returns cost estimates to the planner!

u  ExplainForeignScan
•  Optionally adds additional data to EXPLAIN output!

u  BeginForeignScan
•  Performs initialisation required for the foreign scan!

33 © 2011 EnterpriseDB. All rights reserved.

ExplainForeignScan (pseudo code)!
static void
mysqlExplainForeignScan(ForeignScanState *node, ExplainState *es)
{
 /* Give some possibly useful info about startup costs, if needed */

 if (es->costs)
 {
 if (IsLocal(server))

 ExplainPropertyLong("Local server startup cost", 10, es);
 else
 ExplainPropertyLong("Remote server startup cost", 25, es);
 }

}

34 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  PlanForeignScan

•  Plans the foreign scan on the remote server!
•  May or may not actually do anything remotely!
•  Returns cost estimates to the planner!

u  ExplainForeignScan
•  Optionally adds additional data to EXPLAIN output!

u  BeginForeignScan
•  Performs initialisation required for the foreign scan!

35 © 2011 EnterpriseDB. All rights reserved.

BeginForeignScan (pseudo code)!
static void
mysqlBeginForeignScan(ForeignScanState *node, int eflags)
{
 /* Connect to the remote server */

 MYSQL *conn = mysql_connect(server, port, username, password);

 /* Build the remote SQL query */

 query = sprintf(query, “SELECT * FROM %s”, table);

 /* Stash away the state info for use by other API functions */
 festate = (MySQLFdwExecutionState *) palloc(sizeof(MySQLFdwExecutionState));

 node->fdw_state = (void *) festate;

 festate->conn = conn;

 festate->query = query;

 /* This will store the remote query result */
 festate->result = NULL;

}

36 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  IterateForeignScan

•  Begin executing the foreign scan on first invocation!
•  Returns one tuple per call!

u  ReScanForeignScan
•  Reset the scan to start again from the beginning!

u  EndForeignScan
•  Complete the foreign scan!
•  Release resources!

37 © 2011 EnterpriseDB. All rights reserved.

IterateForeignScan (pseudo code)!
static TupleTableSlot *
mysqlIterateForeignScan(ForeignScanState *node)
{
 MySQLFdwExecutionState *festate = (MySQLFdwExecutionState *) node->fdw_state;

 TupleTableSlot *slot = node->ss.ss_ScanTupleSlot;

 /* Execute the query, if required */

 if (!festate->result)
 festate->result = mysql_query(festate->conn, festate->query);

 /* Get the next row from the remote server */

 row = mysql_fetch_row(festate->result);

 /* If there’s a row, convert to a tuple and store it in the slot */

 if (row)
 {
 ConvertMySqlRowToTuple(row, tuple);
 ExecStoreTuple(tuple, slot);

 }

 return slot;
}

38 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  IterateForeignScan

•  Begin executing the foreign scan on first invocation!
•  Returns one tuple per call!

u  ReScanForeignScan
•  Reset the scan to start again from the beginning!

u  EndForeignScan
•  Complete the foreign scan!
•  Release resources!

39 © 2011 EnterpriseDB. All rights reserved.

ReScanForeignScan (pseudo code)!
static void
mysqlReScanForeignScan(ForeignScanState *node)
{
 MySQLFdwExecutionState *festate = (MySQLFdwExecutionState *) node->fdw_state;

 /* Reset the scan so it can start over */
 mysql_free_result(festate->result);

 festate->result = NULL;
}

40 © 2011 EnterpriseDB. All rights reserved.

Requirements – API Functions!
u  IterateForeignScan

•  Begin executing the foreign scan on first invocation!
•  Returns one tuple per call!

u  ReScanForeignScan
•  Reset the scan to start again from the beginning!

u  EndForeignScan
•  Complete the foreign scan!
•  Release resources!

41 © 2011 EnterpriseDB. All rights reserved.

EndForeignScan (pseudo code)!
static void
mysqlReScanForeignScan(ForeignScanState *node)
{
 MySQLFdwExecutionState *festate = (MySQLFdwExecutionState *) node->fdw_state;

 /* Cleanup the query string */
 pfree(festate->query);

 festate->query = NULL;

 /* Cleanup the scan result */
 mysql_free_result(festate->result);

 festate->result = NULL;

 /* Cleanup the remote connection */

 mysql_close(festate->conn);
 festate->conn = NULL;

 /* Cleanup the FDW state */

 pfree(festate);
 festate = NULL;
}

42 © 2011 EnterpriseDB. All rights reserved.

Using FDWs!

43 © 2011 EnterpriseDB. All rights reserved.

Create the Objects!
raptor:pgsql91 dpage$ bin/psql fdw
psql (9.1.0)
Type "help" for help.

fdw=# CREATE EXTENSION mysql_fdw;
CREATE EXTENSION

44 © 2011 EnterpriseDB. All rights reserved.

Create the Objects!
raptor:pgsql91 dpage$ bin/psql fdw
psql (9.1.0)
Type "help" for help.

fdw=# CREATE EXTENSION mysql_fdw;
CREATE EXTENSION
fdw=# CREATE SERVER mysql_svr

fdw-# FOREIGN DATA WRAPPER mysql_fdw
fdw-# OPTIONS (address '127.0.0.1', port '3306');
CREATE SERVER

45 © 2011 EnterpriseDB. All rights reserved.

Create the Objects!
raptor:pgsql91 dpage$ bin/psql fdw
psql (9.1.0)
Type "help" for help.

fdw=# CREATE EXTENSION mysql_fdw;
CREATE EXTENSION
fdw=# CREATE SERVER mysql_svr

fdw-# FOREIGN DATA WRAPPER mysql_fdw
fdw-# OPTIONS (address '127.0.0.1', port '3306');
CREATE SERVER
fdw=# CREATE FOREIGN TABLE employees (

fdw(# id integer,
fdw(# name text,
fdw(# address text)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (table 'hr.employees');
CREATE FOREIGN TABLE

46 © 2011 EnterpriseDB. All rights reserved.

Create the Objects!

fdw=# CREATE EXTENSION mysql_fdw;
CREATE EXTENSION
fdw=# CREATE SERVER mysql_svr

fdw-# FOREIGN DATA WRAPPER mysql_fdw
fdw-# OPTIONS (address '127.0.0.1', port '3306');
CREATE SERVER

fdw=# CREATE FOREIGN TABLE employees (
fdw(# id integer,
fdw(# name text,
fdw(# address text)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (table 'hr.employees');
CREATE FOREIGN TABLE

fdw=# CREATE FOREIGN TABLE overtime_2010 (
fdw(# id integer,
fdw(# employee_id integer,
fdw(# hours integer)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (query 'SELECT id, employee_id, hours FROM hr.overtime WHERE year
= 2010;');

CREATE FOREIGN TABLE

47 © 2011 EnterpriseDB. All rights reserved.

Run a Query!
fdw=# CREATE FOREIGN TABLE employees (
fdw(# id integer,
fdw(# name text,
fdw(# address text)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (table 'hr.employees');
CREATE FOREIGN TABLE

fdw=# CREATE FOREIGN TABLE overtime_2010 (
fdw(# id integer,
fdw(# employee_id integer,
fdw(# hours integer)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (query 'SELECT id, employee_id, hours FROM hr.overtime WHERE year
= 2010;');

CREATE FOREIGN TABLE
fdw=# SELECT * FROM employees;
 id | name | address
----+-------------+-----------------------------

 1 | Dave Page | 123 High Street, Oxford
 2 | John Smith | 54 Church Lane, Glasgow
 3 | Fred Bloggs | 3b Grouse Court, Birmingham

(3 rows)

48 © 2011 EnterpriseDB. All rights reserved.

Explain a Query!
fdw=# CREATE FOREIGN TABLE overtime_2010 (
fdw(# id integer,
fdw(# employee_id integer,
fdw(# hours integer)

fdw-# SERVER mysql_svr
fdw-# OPTIONS (query 'SELECT id, employee_id, hours FROM hr.overtime WHERE year
= 2010;');

CREATE FOREIGN TABLE
fdw=# SELECT * FROM employees;
 id | name | address

----+-------------+-----------------------------
 1 | Dave Page | 123 High Street, Oxford
 2 | John Smith | 54 Church Lane, Glasgow
 3 | Fred Bloggs | 3b Grouse Court, Birmingham

(3 rows)
fdw=# EXPLAIN SELECT * FROM employees;
 QUERY PLAN
--

 Foreign Scan on employees (cost=10.00..13.00 rows=3 width=68)
 Local server startup cost: 10
 MySQL query: SELECT * FROM hr.employees

(3 rows)

49 © 2011 EnterpriseDB. All rights reserved.

Run another Query!
fdw=# SELECT * FROM employees;
 id | name | address
----+-------------+-----------------------------
 1 | Dave Page | 123 High Street, Oxford

 2 | John Smith | 54 Church Lane, Glasgow
 3 | Fred Bloggs | 3b Grouse Court, Birmingham
(3 rows)

fdw=# EXPLAIN SELECT * FROM employees;
 QUERY PLAN
--
 Foreign Scan on employees (cost=10.00..13.00 rows=3 width=68)

 Local server startup cost: 10
 MySQL query: SELECT * FROM hr.employees
(3 rows)

fdw=# SELECT e.id, e.name, hours FROM employees e LEFT OUTER JOIN overtime_2010 o
ON (e.id = o.employee_id);
 id | name | hours
----+-------------+-------

 1 | Dave Page | 23
 2 | John Smith |
 3 | Fred Bloggs | 14

(3 rows)

50 © 2011 EnterpriseDB. All rights reserved.

Explain another Query!
id | name | hours
----+-------------+-------
 1 | Dave Page | 23
 2 | John Smith |

 3 | Fred Bloggs | 14
(3 rows)
fdw=# EXPLAIN SELECT e.id, e.name, hours FROM employees e LEFT OUTER JOIN
overtime_2010 o ON (e.id = o.employee_id);
 QUERY PLAN

 Nested Loop Left Join (cost=20.00..25.09 rows=3 width=40)
 Join Filter: (e.id = o.employee_id)
 -> Foreign Scan on employees e (cost=10.00..13.00 rows=3 width=36)

 Local server startup cost: 10
 MySQL query: SELECT * FROM hr.employees
 -> Materialize (cost=10.00..12.01 rows=2 width=8)

 -> Foreign Scan on overtime_2010 o (cost=10.00..12.00 rows=2 width=8)
 Local server startup cost: 10
 MySQL query: SELECT id, employee_id, hours FROM hr.overtime WHERE
year = 2010;

(9 rows)

51 © 2011 EnterpriseDB. All rights reserved.

Questions?  
 
 

Email: dpage@pgadmin.org 
 

Twitter: @pgsnake!

52 © 2011 EnterpriseDB. All rights reserved.

Thank you! 
!

53 © 2011 EnterpriseDB. All rights reserved.

