
PostgreSQL 9.5 WAL format

Heikki Linnakangas / VMware

Jan 31st, 2015

WAL-logging basics

I The log is a sequence of log records
I One log record for every change
I Write Ahead Log
I Each WAL record is assigned an LSN (Log Sequence Number)

PostgreSQL’s WAL log

I REDO only, no UNDO actions.
I Instantaneous rollbacks
I No limit on transaction size
I Physical log

Example: Insert a row to table with one index

rmgr: Heap len (rec/tot): 3/ 59,
tx: 1133, lsn: 0/6909A748, prev 0/6909A718,
desc: INSERT off 3,
blkref #0: rel 1663/12726/50058 blk 0

rmgr: Btree len (rec/tot): 2/ 64,
tx: 1133, lsn: 0/6909A788, prev 0/6909A748,
desc: INSERT_LEAF off 1,
blkref #0: rel 1663/12726/50064 blk 1

rmgr: Transaction len (rec/tot): 12/ 38,
tx: 1133, lsn: 0/6909A7C8, prev 0/6909A788,
desc: COMMIT_COMPACT 2015-01-31 07:59:23.344845 CET

Format overview

I WAL records are written in WAL pages.
I Each page has a page header
I pages are stored in 16 MB segments (= files). Segment has a

header too.

No changes here (since 9.3).

Full-page writes

I First time a page is modified after a checkpoint, a copy of the
whole page is put to the log

I Subsequent changes to the same page only log the changes.

Old format (PostgreSQL 9.4 and below)
/*
* The overall layout of an XLOG record is:
* Fixed-size header (XLogRecord struct)
* rmgr-specific data
* BkpBlock
* backup block data
* BkpBlock
* backup block data
* ...
*
* where there can be zero to four backup blocks (as signaled by xl_info flag
* bits). XLogRecord structs always start on MAXALIGN boundaries in the WAL
* files, and we round up SizeOfXLogRecord so that the rmgr data is also
* guaranteed to begin on a MAXALIGN boundary. However, no padding is added
* to align BkpBlock structs or backup block data.
*
* NOTE: xl_len counts only the rmgr data, not the XLogRecord header,
* and also not any backup blocks. xl_tot_len counts everything. Neither
* length field is rounded up to an alignment boundary.
*/

Old format (PostgreSQL 9.4 and below)
typedef struct XLogRecord
{

uint32 xl_tot_len; /* total len of entire record */
TransactionId xl_xid; /* xact id */
uint32 xl_len; /* total len of rmgr data */
uint8 xl_info; /* flag bits, see below */
RmgrId xl_rmid; /* resource manager for this record */
/* 2 bytes of padding here, initialize to zero */
XLogRecPtr xl_prev; /* ptr to previous record in log */
pg_crc32 xl_crc; /* CRC for this record */

/* If MAXALIGN==8, there are 4 wasted bytes here */

/* ACTUAL LOG DATA FOLLOWS AT END OF STRUCT */

} XLogRecord;

32 bytes in total (28 on 32-bit systems)

Old format problems

pg_rewind

I A tool to resynchronize PostgreSQL clusters e.g. after failover
I rsync on steroids

Other tools

I Read-ahead of pages at WAL replay
I pg_readahead, by Koichi Suzuki.

I Differential or incremental backups.

Old format Problems

The format left a lot as resource manager’s responsibility

I No common format for recording which block the record
applies to. (Except for full-page images).

I Bulky

Code issues

I lots of boilerplate code in WAL generation / replay
I Complex record types needed careful bookkeeping of which

parts of the data were included, and which was left out due to
full-page writes.

New format (PostgreSQL 9.5)
/*
* The overall layout of an XLOG record is:
* Fixed-size header (XLogRecord struct)
* XLogRecordBlockHeader struct
* XLogRecordBlockHeader struct
* ...
* XLogRecordDataHeader[Short|Long] struct
* block data
* block data
* ...
* main data
*
* There can be zero or more XLogRecordBlockHeaders, and 0 or more bytes of
* rmgr-specific data not associated with a block. XLogRecord structs
* always start on MAXALIGN boundaries in the WAL files, but the rest of
* the fields are not aligned.
*
* The XLogRecordBlockHeader, XLogRecordDataHeaderShort and
* XLogRecordDataHeaderLong structs all begin with a single ’id’ byte. It’s
* used to distinguish between block references, and the main data structs.
*/

New format (PostgreSQL 9.5)

typedef struct XLogRecord
{

uint32 xl_tot_len; /* total len of entire record */
TransactionId xl_xid; /* xact id */
XLogRecPtr xl_prev; /* ptr to previous record in log */
uint8 xl_info; /* flag bits, see below */
RmgrId xl_rmid; /* resource manager for this record */
/* 2 bytes of padding here, initialize to zero */
pg_crc32 xl_crc; /* CRC for this record */

/* XLogRecordBlockHeaders and XLogRecordDataHeader follow, no padding */

} XLogRecord;

24 bytes in total

New format (PostgreSQL 9.5)

/*
* Header info for block data appended to an XLOG record.
...
*/

typedef struct XLogRecordBlockHeader
{

uint8 id; /* block reference ID */
uint8 fork_flags; /* fork within the relation, and flags */
uint16 data_length; /* number of payload bytes (not including page

* image) */

/* If BKPBLOCK_HAS_IMAGE, an XLogRecordBlockImageHeader struct follows */
/* If !BKPBLOCK_SAME_REL is not set, a RelFileNode follows */
/* BlockNumber follows */

} XLogRecordBlockHeader;

New format (PostgreSQL 9.5)

Per block flags:

#define BKPBLOCK_HAS_IMAGE 0x10 /* block data is an XLogRecordBlockImage */
#define BKPBLOCK_HAS_DATA 0x20
#define BKPBLOCK_WILL_INIT 0x40 /* redo will re-init the page */
#define BKPBLOCK_SAME_REL 0x80 /* RelFileNode omitted, same as previous */

Code changes

New format required changes to

I every function that generates a WAL record,
I and every REDO routine.

src/backend/access/brin/brin.c | 11 +-
src/backend/access/brin/brin_pageops.c | 97 +–
src/backend/access/brin/brin_revmap.c | 23 +-
src/backend/access/brin/brin_xlog.c | 111 ++-
src/backend/access/gin/ginbtree.c | 111 +–
src/backend/access/gin/gindatapage.c | 162 ++–
src/backend/access/gin/ginentrypage.c | 64 +-
src/backend/access/gin/ginfast.c | 92 +–
93 files changed, 3945 insertions(+), 4366 deletions(-)

Code changes / writing a WAL record
Before:

xl_heap_lock xlrec;
XLogRecData rdata[2];

xlrec.target.node = relation->rd_node;
xlrec.target.tid = tuple->t_self;
xlrec.locking_xid = xid;
xlrec.infobits_set = compute_infobits(new_infomask,

tuple->t_data->t_infomask2);
rdata[0].data = (char *) &xlrec;
rdata[0].len = SizeOfHeapLock;
rdata[0].buffer = InvalidBuffer;
rdata[0].next = &(rdata[1]);

rdata[1].data = NULL;
rdata[1].len = 0;
rdata[1].buffer = *buffer;
rdata[1].buffer_std = true;
rdata[1].next = NULL;

recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK, rdata);

PageSetLSN(page, recptr);

Code Changes / Writing a WAL record
After:

xl_heap_lock xlrec;

XLogBeginInsert();
XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);

xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
xlrec.locking_xid = xid;
xlrec.infobits_set = compute_infobits(new_infomask,

tuple->t_data->t_infomask2);
XLogRegisterData((char *) &xlrec, SizeOfHeapLock);

recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);

PageSetLSN(page, recptr);

Code Changes / Writing a WAL record

/* flags for XLogRegisterBuffer */
#define REGBUF_FORCE_IMAGE 0x01 /* force a full-page image */
#define REGBUF_NO_IMAGE 0x02 /* don’t take a full-page image */
#define REGBUF_WILL_INIT (0x04 | 0x02) /* page will be re-initialized at

* replay (implies NO_IMAGE) */
#define REGBUF_STANDARD 0x08 /* page follows "standard" page layout,

* (data between pd_lower and pd_upper
* will be skipped) */

#define REGBUF_KEEP_DATA 0x10 /* include data even if a full-page image
* is taken */

Code changes / redo routine
/* If we have a full-page image, restore it and we’re done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{

(void) RestoreBackupBlock(lsn, record, 0, false, false);
return;

}

buffer = XLogReadBuffer(xlrec->target.node,
ItemPointerGetBlockNumber(&(xlrec->target.tid)),
false);

if (!BufferIsValid(buffer))
return;

page = (Page) BufferGetPage(buffer);

if (lsn <= PageGetLSN(page)) /* changes are applied */
{

UnlockReleaseBuffer(buffer);
return;

}

Code changes / redo routine / after

if (XLogReadBufferForRedo(record, 0, &buffer) ==
BLK_NEEDS_REDO)

{
... apply the changes from the record ...

}
if (BufferIsValid(buffer))

UnlockReleaseBuffer(buffer);

Code changes / xlogreader.c

xlogreader is an API for reading WAL records

I Used by WAL replay functions
I Can be used by external tools

I pg_xlogdump
I pg_rewind

XLogRecGetData XLogRecGetDataLen

XLogRecGetBlockData XLogRecGetBlockTag

Testing

Lots of changes -> Lots of bugs

I Need for automated testing
I block comparison tool

Block comparison tool

I Every time a page is locked, stash an image of the block as it
was

I Every time a page lock is released, compare the image with the
before-image

I If it differs, dump it to a file along with the LSN

Testing with the block comparison tool

I Set up a master-standby system
I run “make installcheck”

I produces about 11 GB of dumped pages
I in both master and standby

I run a little tool to compare the dumped pages between master
and standby

I masks out hint bits etc.

Found existing bugs

Found three existing bugs in obscure corner cases:

I bit in visibility map might not be set correctly (9.3-)
I concurrent scan of GiST index might miss records in hot

standby (9.0-)
I Insertion to GIN internal pages didn’t take a full-page image

(9.0-)

Comparison

I How does the new WAL format perform?

Comparison: WAL size
WAL size of various UPDATE commands.

testname 9.4 9.5 difference

two short fields, no change 367 329 -10 %

two short fields, one changed 405 331 -18 %

two short fields, both changed 405 370 -9 %

one short and one long field, no change 73 54 -26 %

ten tiny fields, all changed 445 369 -17 %

hundred tiny fields, all changed 162 156 -4 %

hundred tiny fields, half changed 174 162 -7 %

hundred tiny fields, half nulled 93 77 -17 %

9 short and 1 long, short changed 91 89 -3 %

BTW

I Full Page Compression patch by Fujii Masao, Michael Paquier,
et al

BTW 2

The checksum algorithm changed in 9.5. It’s now CRC-C.

I Allows hardware computation on some platforms, like modern
Intel (patch pending)

I Slicing-by-8 on other platforms (patch pending)

The end

I WAL generation and replay code is cleaner now.
I You can now write tools that read WAL and make some sense

of it.
I See contrib/pg_xlogdump for an example.

