
© 2013 EnterpriseDB Corporation - All rights reserved. 1

Materialised views now and the
future
Thom Brown | PostgreSQL Conference Europe 2013

2

Disclaimer

“Materialised” vs

“Optimiser” vs

“Catalogue” vs

“Behaviour” vs

“Customisable” vs

“Favourite” vs

“Materialized”

“Optimizer”

“Catalog”

“Behavior”

“Customizable”

“Favorite”

3

Disclaimer

4

• Back in 2009, 2nd most-requested PostgreSQL feature on
UserVoice was: Materialised Views! (Hot Standby was 1st
if you're curious)

• PostgreSQL now has Materialised Views in version 9.3!

• Designed and developed by Kevin Grittner of EDB (major
contributor, PostgreSQL committer). (thanks Kevin!)

• Out of 175 people surveyed with the question “What's
your favourite 9.3 feature?”, 0 people said Materialized
Views... it wasn't in the list of choices though.

Materialised Views in PostgreSQL

5

Table

Table vs View vs Materialised View

Query directly

Application

Read from table
each time

Table

6

Table vs View vs Materialised View

Query indirectly

Application View

SELECT columns
FROM table
WHERE column = value;

Read from table
each time

View

Table

7

Table vs View vs Materialised View

Query directly

Application

Read direct from
materialised view
each time

Read when MV created or
manually refreshed.

Materialised View

Table

Materialised View

SELECT columns
FROM table
WHERE column = value;

8

Table vs View vs Materialised View

View

SELECT columns
FROM table
WHERE column = value;

• Stores data

• Returns its data

• Can modify its data

• Stores a query

• Executes its query

• Returns results
• Stores a query

• Executes its query upon
creation or refresh

• Stores results

• Returns stored results

• Cannot modify its data

Table

SELECT columns
FROM table
WHERE column = value;

Materialised View

SELECT columns
FROM table
WHERE column = value;

9

-- Create the initial view
CREATE VIEW v_data AS
 SELECT ...

-- Create a table based on a view
CREATE TABLE mv_data AS
 SELECT * FROM v_data;

-- Refresh the table
BEGIN;
 DROP TABLE mv_data;
 CREATE TABLE mv_data AS
 SELECT *
 FROM v_data;
END;

Previously in PostgreSQL...

10

-- Create supporting tracking tables, functions,
triggers...

CREATE TABLE track_mvs...
CREATE FUNCTION create_mv...
CREATE FUNCTION drop_mv...
CREATE FUNCTION refresh_mv...
CREATE TRIGGER t_mv_update...
CREATE TRIGGER t_mv_insert...
CREATE TRIGGER t_mv_delete...
CREATE VIEW v_summary...

Previously in PostgreSQL...

11

-- Create a materialised view

CREATE MATERIALIZED VIEW mv_data AS
 SELECT d.id, d.department, count(d.department)
 FROM staff s
 INNER JOIN dept d ON s.dept_id = d.dept_id
 GROUP BY d.id, d.department WITH NO DATA;

-- Refresh a materialised view

REFRESH MATERIALIZED VIEW mv_data;

Using Materialised Views in PostgreSQL 9.3

12

• For data that doesn't need to be up-to-date.

• For data that takes a long time to query (e.g. requires
lots of joins or processing) but frequently needed or
needs to be prepared ahead of time.

• Can be based on any read-only query.

• Can have indexes like regular tables.

• Can be useful for caching foreign table data.

• Sacrifice freshness for speed.

• Takes up disk space to store results.

• Returns an error upon querying if created or refreshed
using WITH NO DATA.

Should I use a Materialised View?

13

• CREATE / DROP / ALTER / REFRESH MATERIALIZED
VIEW.

• \dm command in psql to list MVs.
• pg_matviews system catalogue.

• Contains query definition.
• Requires an exclusive lock to refresh.

• Needs to wait for all active queries to complete.
• Cannot be used while refreshing.

• Snapshot implementation
• Can produce a lot of WAL data for large refreshes and

therefore a lot of replication traffic.
• Cannot be temporary or unlogged, unlike tables.
• Refreshing “freezes” rows.

Materialised Views in 9.3

14

• Data not dumped, only the query definition.

• Outputs CREATE MATERIALIZED VIEW statement
with WITH NO DATA clause.

• Later outputs REFRESH MATERIALIZED VIEW
statement if it was populated at the time of backup
dump.

What about pg_dump with MVs in 9.3?

15

Exclusive lock issue explained

BEGIN;
 SELECT *
 FROM mv_data;
-- Access Share Lock acquired

 CREATE TABLE data (id serial PRIMARY KEY, value int);
 INSERT INTO data (value) VALUES (1);
 CREATE MATERIALIZED VIEW mv_data AS SELECT * FROM data;

INSERT INTO data VALUES (2);

REFRESH MATERIALIZED VIEW mv_data;
-- Waiting for T2 to finish to
acquire Exclusive Lock

 BEGIN;
 SELECT * FROM mv_data;
-- Waiting for T1 to
finish to acquire Access
Share Lock

 COMMIT;
-- releases Access Share Lock`

 Session 1 Session 2 Session 3

-- Exclusive Lock acquired
and refresh completes -- Access Share Lock

acquired

16

Exclusive lock issue explained

Query 1

Query 2
Query 3

Query 4

Query 5

T
im

e Materialised
View

Refresh Query 5

Access Share Lock

Exclusive Lock

Waiting to acquire lock

K
ey

Materialised
View

Refresh

17

• Shamelessly stolen from Depesz (www.depesz.com)

-- Create a copy of the materialised view
DO $$
BEGIN

EXECUTE 'CREATE MATERIALIZED VIEW mv_new AS '
 || pg_get_viewdef('mv'::regclass);
END $$;

-- Replace the MV atomically
BEGIN;

DROP MATERIALIZED VIEW mv;
ALTER MATERIALIZED VIEW mv_new RENAME TO mv;

COMMIT;

• Transactions don't need to wait for MV build, but still requires
Access Exclusive Lock for DROP step.

MV exclusive lock mitigation in 9.3

18

A quirk with using materialised views:

• With a materialised view that is refreshed
non-concurrently it's possible for a single transaction to
see data in a materialised view that is newer than that of
the underlying tables.

• Concurrently-refreshed materialised views don't exhibit
this behaviour.

Back To The Future...

19

Back To The Future...

SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL
SERIALIZABLE;

CREATE TABLE data (
 id serial PRIMARY KEY,
 ts timestamp);

INSERT INTO data (ts) VALUES (now());

CREATE MATERIALIZED VIEW mv_data AS
SELECT id, ts FROM data;

 Session 1 Session 2

UPDATE data SET ts = now();

REFRESH MATERIALIZED VIEW mv_data;

BEGIN;
 SELECT * FROM data;

 SELECT * FROM data
 UNION
 SELECT * FROM mv_data;

-- Two rows returned with
different ts values.

20

• REFRESH MATERIALIZED VIEW CONCURRENTLY.

• Doesn't block reads.

• Can produce more or less WAL than non-concurrent
refresh depending on number of changes.

• Only one refresh allowed at any one time.

• MV needs to be already populated.

• Requires a unique index.

• VACUUMing becomes relevant.

• Unlike non-concurrent form, doesn't freeze rows.

• Cannot be used with WITH NO DATA option (as it
wouldn't make sense).

Materialised Views in 9.4

21

“CONCURRENTLY” implementation

Full Outer Join

Inserts

Deletes

Table

Materialised View

SELECT columns
FROM table
WHERE column = value;

Temp Materialised View

SELECT columns
FROM table
WHERE column = value;

22

(These are not necessarily going to be implemented)

• Unlogged materialised views.

• Same as WITH NO DATA state upon crash.

• Incremental materialised views.

• Updates the MV as tables are updated.

• Customisable level of “eagerness”.

• Complicated by features such as aggregates and
NOT EXISTS.

• Support for recursive queries will likely arrive more
than 1 release later.

Materialised Views roadmap

23

• CREATE OR REPLACE MATERIALIZED VIEW

• Just an oversight that it wasn't added.

• Updates for concurrent refreshes.

• Would allow for HOT updates.

• Lazy automatic refresh based on table modification
statistics.

• Staleness testing.

• Optimiser awareness of materialised views.

• Pull in MV data if fresh enough.

• Treat MVs like indexes.

Materialised Views roadmap

24

• Incremental update “eagerness”

• Very Eager – Applied before incrementing command
counter so appears up-to-date within the transaction.

• Eager – Applied at commit time, and visible with all
other changes in the transaction.

• Inbetween – Queued to apply immediately after
transaction commit asynchronously.

• Lazy – Queued to apply on a specified schedule.

• Very Lazy – Queued to be applied on demand.

• Trade-off: More eager = fresh more frequently but
with the price of greater overhead.

Materialised Views roadmap

25

Fin

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Layout: Title and Content, Arial 32pt
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Layout: Content with Subhead, Arial 32

