
Author : Chris Drawater
Date :  March  2006
Version : 1.0

PostgreSQL 8.1   for J2EE/JDBC applications

Abstract

A basic overview of some of  the  changes  required to port  JDBC applications from Oracle to
PostgreSQL.

Document Status

This document is Copyright  © 2006 by Chris Drawater.

This document is freely distributable under the license terms of the GNU Free Documentation License
(http://www.gnu.org/copyleft/fdl.html).  It  is provided for educational purposes only and is NOT supported
– use at your own risk ! 

Introduction

This  paper documents provides  a basic overview  of  porting  JDBC applications from Oracle to
PostgreSQL.   XML/XQuery is not covered.

It is based upon experience with the following configurations :

Databases 
Oracle 10.2
PostgreSQL 8.1.1 

Development Environment on Windows XP 
PostgreSQL JDBC driver  -  postgresql-8.1-404.jdbc3.jar
JDK 1.5.0 
Apache 2.0.55 
Tomcat 5.5.15 
Connector : Apache Tomcat JK 1.2.15 for WIN32 – works with  Apache 2.0.55 and later
Orion AS 2.0.2

For  demonstrative purposes, ‘vAuth’  is used as the name of the  application.

Abbreviation & Definitions

AS   Application Server  ( for simplicity including Tomcat)
PG  PostgreSQL
OLTP   Online Transaction Processing   (ie. no data trawling or MIS etc)
MPP  Massively Parallel Processing or Processor
VLDB  Very Large Database
MVCC  Multi-Version Concurrency Control
DDL  (SQL) Data Definition Language

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p1/8



Positioning

PostgreSQL in it’s standard form (as downloaded from http://www.postgresql.org/download) is arguably
best suited to OLTP and small datamarts or reporting  for small/medium  data volumes  of say arbitrarily up
to 100’s of Gb of data (large being when manipulating/managing/backing up the data volume becomes
problematic).

Currently,  standard PostgreSQL does not have the server level parallel operations or  inbuilt MPP type
capability nor some of the diagnostic information available  that would allow it to move up into the VLDB
data warehouse space.

Background for Oracle Developers

For  developers coming from an Oracle background, PostgreSQL has a number of familiar (often near
identical) concepts including 

MVCC
The same transaction isolation levels with a default of “read committed”
Optional table level locking (‘lock table…’)
Default Row level locking for data writes
Btree indexes ( also other index types available)
Referential integrity (primary, foreign keys)
Triggers
Sequence numbers
Explain ( for looking at problem queries etc) & optimizer statistics
Views

also
DBMS server side functions/procedures (available in a variety of languages)

Also available within PostgreSQL, but  not quite the same as  in Oracle and so needing a little more
consideration,  are

Query rewrite (Oracle) & Rules (PostgreSQL)
Types (PostgreSQL  is far more extensive)
Table inheritance
Roles
Java Stored Procedures ( not in base product, but available following the links at  PostgreSQL:

Downloads) 
2 phase commit support
varrays  ( although not for composite data types)

Developers should not find the switch from Oracle to PostgreSQL too problematic for OLTP type systems.

However,  be aware is that the following  Oracle type technologies are not available with PostgreSQL 8.1 :

No bitmap indexes
No materialized views
No parallel options  on DDL etc
No parallel query
No packages
No DB links
No distributed queries
No synonyms
No  Index Organized Tables (IOT)

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p2/8



Command Line SQL Interface

The equivalent of the Oracle sqlplus utility is the PostgreSQL  psql utility, which  (assuming the
environment has been set up correctly) can be invoked by

$ psql <DB> <User>

Note that, by default, auto-commit is enabled, so to execute a multi-statement TX, use either

begin work;
SQL etc

commit;

or
\set AUTOCOMMIT OFF

SQL etc
commit;

Note that  auto-commit can be turned off  either programmatically within JDBC code  (see later) or
sometimes  within  the AS  specific DataSource definitions, so Java application code doesn’t need to be
modified. 

Converting SQL DDL  from Oracle to PostgreSQL

Many of the PostgreSQL Datatypes will be familiar to Oracle and ANSI SQL developers.

As a starting point, approximate equivalent datatypes are as follows , but please  check the documentation
to verify datatype precision and exact meaning, and datatype comparison semantics etc.

ANSI PostgreSQL 8.1 Oracle 10g

integer, integer number
numeric, decimal numeric, decimal number
float float number
char char char
varchar varchar varchar2
date date date (includes time to sec)

timestamp timestamp
bytea BLOB
text CLOB

Tablespaces can be specified   for  table or index creation  ,  but there are  no Oracle type storage
parameters : only the tablespace name   ( which maps down to a filesystem  directory) is required.

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p3/8



For example,

create index  auth_expiry on UserAuthentication (expiry)
tablespace APPDATA;

The familiar Btree index is  available, including  partial , multi-col, and unique variants,  as is   standard
referential integrity (primary, foreign keys).

PostgreSQL partitioning  is not as slick as that of Oracle – basically it relies  upon   table inheritance with
each sub-table ( equivalent to a partition)  having  an optimizer aware contraint which defines the range  or
list of key  values  which  in turn defines/controls  the contained data..  Please see the PostgreSQL
documentation for further  information.

Whenever possible, use ANSI or common SQL datatypes and DDL.

JDBC driver

A pure Java (Type 4) JDBC driver  implementation can be downloaded  from 
http://jdbc.postgresql.org/

Assuming the use of  the JDK  1.5, download
postgresql-8.1-404.jdbc3.jar

and  make the driver available to the application server classpath.

For Orion 2.0.2, copy to  ORION_BASE/lib  .
For Tomcat 5.5.15,  copy the file to  TOMCAT_HOME\common\lib

(If moving  JAR files between different hardware types, always ftp in BIN mode).

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p4/8



J2EE Application Servers –  Configuring DataSources

Configuring a PostgreSQL  DataSource is little different from any other  database DataSource but is usually
AS vendor dependant.

Below is an example of  a DataSource configuration for the Orion  2.0.2  AS  and this  XML definition
would be  included in file  $ORION_BASE/config/data-sources.xml.

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="vAuthDS"
location="jdbc/vAuthDS" <!-- JNDI path for  basic DataSource -->
pooled-location="jdbc/vAuthPooledDS" <!-- JNDI path for  pooled  DataSource  -->
xa-location="jdbc/xa/vAuthXADS" <!-- JNDI path for XA DataSource  -->
ejb-location="jdbc/vAuthEJBDS" <!-- JNDI path for  EJB DataSource -->
connection-driver="org.postgresql.Driver"
username="xyz"
password="xyz"
url="jdbc:postgresql://10.248.42.78:5432/db9"
max-connections="5" <!-- max pool size -->
min-connections="3" <!--- min pool size  -->
inactivity-timeout="300" <!-- 5 mins  -->

/>

The DriverManagerDataSource  class is the wrapper  class which allows Orion to use the PostgreSQL
implementation of a Connection driver  as a DataSource.

With  Tomcat 5.5.15,  to configure an PostgreSQL  DataSource  specific to an application (ie not defined
globally), create a context.xml file containing :

<Context>
<Resource

    auth="Container"
    description="vAuth Postgresql DB Connection"
    name="jdbc/vAuthDS"
    type="javax.sql.DataSource"

    username="xyz"
    password="xyz"
    driverClassName="org.postgresql.Driver"

url="jdbc:postgresql://10.248.42.122:5432/db9"

initialSize="3"
maxActive="10"

    maxIdle="5"
minIdle="3"

    maxWait="5000"

    validationQuery=""
    poolPreparedStatements="false"
    />
</Context>

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p5/8



This  application specific file   context.xml   (as per above)  needs to be created under META-INF
(alongside WEB-INF) in the WAR .

The  hierarchical application WAR directory  tree should look something like 

<app root>
<app root>/*.jsp files
<app root>/*.html files
<app root>/*.gif files
<app root>/*.jsp files
<app root>/WEB-INF dir

<app root>/WEB-INF/web.xml file
<app root>/WEB-INF/classes dir
<app root>/WEB-INF/lib dir

<app root>/WEB-INF/*.jar files
<app root>/META-INF dir

<app root>/META-INF/context.xml file

To enable the application to reference the Tomcat managed  DataSource,  a resource XML entry (matching
the DataSource defined in context.xml ) must be placed in the application web.xml  file – for example :

<resource-ref>
 <description>vAuth Datasource</description>
 <res-ref-name>jdbc/vAuthDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>

</resource-ref>

Using JDBC DataSources

A  JDBC DataSource is usually accessed via a JNDI lookup.

Again the JNDI path may  be AS vendor implementation specific, but other than that, the basic  code should
not change.

A very simple example of application code acquiring a pooled database Connection object  via a
DataSource using a JNDI lookup  would look  something like :

String dsString = "java:/comp/env/jdbc/vAuthDS"; // Tomcat

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dsString);

Connection con = ds.getConnection();

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p6/8



Direct JDBC Connections

If non-DataSource derived Connection objects are used, then  the URL used to connect to the PostgreSQL
server should be of the form  

jdbc:postgresql://host:port/database

As seen in an earlier section, this URL should also be used within DataSource definitions.

Replace the line (used to load the JDBC driver)
Class.forName ("oracle.jdbc.driver.OracleDriver");

with
Class.forName("org.postgresql.Driver");

and remove any Oracle specific imports, such as
import oracle.jdbc.driver.*;

JDBC Connection Setup

Not really PostgreSQL specific issues , but at the Connection level ,  it is also advisable to switch off  the
autocommit feature

Connection con;
…
con.setAutoCommit(false);

and set the default isolation level to “read committed”

con.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);

This setup  provides a default TX behavior that mirrors that of Oracle.

JDBC Extensions

Remove any Oracle JDBC extensions, such as 
((OracleConnection)con2).setDefaultRowPrefetch(50);

Instead, the row pre-fetch must be specified at an individual Statement level =>

eg. PreparedStatement pi = con1.prepareStatement(“select….”);
pi.setFetchSize(50);

If not set, the default  fetch size will default to 0;

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p7/8



Oracle’s SYSDATE in SQL DML

Sysdate can be replaced with  ‘now’::timestamp.

For example,

insert into UserAuthentication(…,expiry) values (…, sysdate + 10);

can be replaced by
insert into UserAuthentication(…,expiry) values (…, 'now'::timestamp + '10 day');

Oracle SQL Extensions

Any non ANSI SQL extensions will need changing.

For example sequence numbers
Oracle => online_id.nextval

should be replaced by 
PostgreSQL => nextval('online_id')

Oracle ‘hints’ embedded within SQL statements  are ignored by PostgreSQL.

Wherever possible, avoid DB specific SQL extensions so as to ensure cross-database portability

Stored Procedures

Oracle PL/SQL  conversion is a little problematic and the obvious PostgreSQL backend language in which
to  (re)write stored procedures is  the  similar procedural language PL/pgSQL.

To install  PL/pgSQL,  the superuser DBA should run, 
$ createlang -d db9  plpgsql # install  'Oracle PL/SQL like' language 

where db9  database

Concluding Remarks

This brief paper  demonstrates, for  R&D/information purposes,   some of the  basics for converting a J2EE
application from using Oracle 10.2  to working  against  PostgreSQL  8.1.

Chris Drawater has been working with RDBMSs since 1987 and  the JDBC API since late 1996, and  can
be contacted at chris.drawater@three.co.uk or drawater@btinternet.com .

© Chris Drawater, 2006 PostgreSQL 8.1 for J2EE/JDBC Appl.,  v1.0 p8/8


