
PostgreSQL Window Functions 2009

1 Anton Burtsev, http://anton-burtsev.livejournal.com

Window functions in PostgreSQL 8.4

Contents
Introduction .. 1
Simple common cases ... 2

Running totals ... 2
Gap analysis ... 2

Motivation table .. 2
Derivative and Integral .. 4

Derivative .. 4
Integral .. 6

Stock control with FIFO costing ... 6
Conclusion ... 12

Introduction
Very often we need access to previous/next rows in row set to calculate particular values for columns.

The classical case is running totals. If we have two columns "Number" and "Amount" we may want third

column "Total" where in first row we have value of Amount in second – Amount(1) + Amount(2). In third

– Amount(1) + Amount(2) + Amount(3), etc. To summarize data we use GROUP BY clause, but the main

trouble is that each row of row set may take part only in one group and therefore in one summary. In

that paradigm we need to multiply rows to get a separate copy of particular row for each summary. For

running total we need n*n/2 rows for n rows in result.

But a great feature windowing was introduced by SQL:2003. Windowing allows us to do 2 major things

 Aggregate calculation over rows of the query results. GROUP BY needs separate subset of rows

to create each summary value. Windowing allow us to create summary values on any subset of

query results without need to query the subset separately for each summary value. In other

words we calculate summaries during querying the result rows and mix summaries and single

values within one row.

 Access particular previous and next rows while calculating values of current row.

But since the SQL:2003 standard was announced we had no support for windowing in PostgreSQL. At

last, in version 8.4 we get the feature ready to use. In this article I show you the power and ease of

window functions in the context of practical tasks.

I won't describe windowing. There are many articles about it: SQL:2008, PostgreSQL documentation,

PostgreSQL window function presentation, Window functions for ORACLE, Windowing brief and list of

publications, etc.

Here I want to show practical use of windowing because it allows us to design very efficient queries.

Without windowing we ought to use procedural languages for those tasks to solve them really

efficiently.

http://wiscorp.com/sql200n.zip
http://www.postgresql.org/docs/8.4/static/tutorial-window.html
http://www.pgcon.org/2009/schedule/attachments/98_Windowing%20Functions.pdf
http://stanford.edu/dept/itss/docs/oracle/10g/server.101/b10736/analysis.htm
http://my.safaribooksonline.com/0596004818/sqlnut2-CHP-4-SECT-3
http://my.safaribooksonline.com/0596004818/sqlnut2-CHP-4-SECT-3

PostgreSQL Window Functions 2009

2 Anton Burtsev, http://anton-burtsev.livejournal.com

Simple common cases
Some simple usages for window functions as a “good form”.

Running totals

Using sum() over().

select

 *,

 sum(Amount) over(order by Number) Total

from Docs;

Or grouping by date

select

 doc_date,

 sum(sum(amount)) over(order by doc_date) Total

from Docs

group by doc_date;

Gap analysis

Using lead() over()

I had to find gaps in sequences in two different projects; see my post for details. And even invent a nice

solution where I utilized EXCEPT operator. Window functions allow one to do gap search in more natural

way as “next minus current > 1”. To implement it we, first, should get distances to next number for each

row:

select

 Number,

 lead(Number) over(order by Number) - Number distance_to_next

from Docs;

And then get the list of gaps

select * from (

 select

 Number+1 gap_start,

 lead(Number) over(order by Number) - Number - 1 gap_length

 from Docs) t

where gap_length > 1

Motivation table
This section shows "nth_value() over()".

HR department often use KPI to motivate personnel. They calculate KPI for each employee and show the

rate to the top N employees. This is done separately for each department. Assume we have the

following sales database:

create sequence sales_seq;

create table Sales

(

 SaleID int primary key default nextval('sales_seq'),

 Department varchar(30),

http://anton-burtsev.livejournal.com/2249.html

PostgreSQL Window Functions 2009

3 Anton Burtsev, http://anton-burtsev.livejournal.com

 SalesManager varchar(30),

 Subject varchar(100),

 Amount numeric

);

insert into Sales (Department, SalesManager, Subject, Amount) Values

('Computers', 'John Dale', 'Notebook', 100),

('Computers', 'Sam Dakota', 'Desktop computer', 100),

('Computers', 'Sam Dakota', 'Desktop computer', 70),

('Computers', 'Eve Nicolas', 'Pocket PC', 270),

('Computers', 'Eve Nicolas', 'Smartphone', 150),

('Cars', 'Nick Hardy', 'Mercedes', 300),

('Cars', 'James Wilson', 'BMW', 100),

('Cars', 'Tom Sawyer', 'Audi', 170);

So we need to group sales by sales manager and order them by department and amount

select

 Department,

 Salesmanager,

 sum(Amount) as Amount

from Sales

group by Department, SalesManager

order by Department, Amount desc;

Department Sales Manager Amount

"Cars" "Nick Hardy" 300

"Cars" "Tom Sawyer" 170

"Cars" "James Wilson" 100

"Computers" "Eve Nicolas" 420

"Computers" "Sam Dakota" 170

"Computers" "John Dale" 100

Now we need to calculate ratio for each amount to Nick Hardy’s and Tom Sawyer’s Amount in Cars

department and to Eve Nicolas’s and Sam Dakota’s in Computers department. To do that we use

nth_value() window function:

select

 Department,

 Salesmanager,

 sum(Amount) as Amount,

 (nth_value(sum(Amount),1) over w / sum(Amount))

 ::numeric(18,1) "rate to top 1",

 (nth_value(sum(Amount),2) over w / sum(Amount))

 ::numeric(18,1) "rate to top 2"

from Sales

group by Department, SalesManager

window w as (

 partition by Department

 order by Amount desc

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING)

order by Department, Amount desc;

PostgreSQL Window Functions 2009

4 Anton Burtsev, http://anton-burtsev.livejournal.com

Department Sales Manager Amount Rate to top 1 Rate to top 2

"Cars" "Nick Hardy" 300 1.0 0.6

"Cars" "Tom Sawyer" 170 1.8 1.0

"Cars" "James Wilson" 100 3.0 1.7

"Computers" "Eve Nicolas" 420 1.0 0.4

"Computers" "Sam Dakota" 170 2.5 1.0

"Computers" "John Dale" 100 4.2 1.7

In the query we expand window from default first-to-current range to first-to-last range. This allows us

to calculate rates for the top 1 and top 2 too.

Derivative and Integral
This section shows lead() over() and lag() over.

Now it is possible to effectively calculate recurrent formulas. Recurrent formulas are the formulas of

kind

Xi+1 = f(xi)

Such formulas are often used for mathematical calculations like integrating, deriving etc. Here I show

you how simple it is with window functions.

Derivative

Assume we have a table, that contains points of some curve in form of ordered points (x,y). And we

need to calculate derivative of a function in each point. To show the real power of window functions I

select three-point approximation for the derivative. In plpgsql it looks as follows

create or replace function derive_three_point(

 t real, -- The point to calculate derivative at.

 x0 real, x1 real, x2 real, -- Three sequential points

 f0 real, f1 real, f2 real) -- to approximate func.

returns real as $$

declare

 a real;

 b real;

 h1 real;

 h2 real;

begin

 h1 = x1 - x0;

 h2 = x2 - x0;

 a = (f2-f0-h2/h1*(f1-f0))/((h2*h2)-h1*h2);

 b = (f1-f0-a*(h1*h1))/h1;

 return 2*a*(t-x0) + b;

end;

$$ LANGUAGE plpgsql;

As we use 3 points to calculate the derivative, we should mention that at the beginning we should use

current and 2 next points when at the end we should use current and 2 previous points. So we need to

calculate 5 points for each row and use 3 most suitable. In SQL it may be written as follows:

-- Create a table to store points

create table Func(x real, y real);

PostgreSQL Window Functions 2009

5 Anton Burtsev, http://anton-burtsev.livejournal.com

-- Create points using y=sin(x) for

-- x: [0;1] with step 0.1

insert into Func

select x, sin(x) from

 (select x::real/10 x from generate_series(0,10) x) t;

-- Calculate the derivative

select

 x,

 case

 -- when at left-most point - use next points

 when x_1 is null then derive_three_point(x, x, x1, x2, y, y1, y2)

 -- when in right-most point - use previous point

 when x1 is null then derive_three_point(x, x_2, x_1, x, y_2, y_1,

y)

 -- in the middle use centralized formula

 else derive_three_point(x, x_1, x, x1, y_1, y, y1)

 end::numeric(18,3) derivative,

 -- and also calculate exact value of derivate in all points

 (cos(x))::numeric(18,3) exact_derivative

from

(

 -- Here we prepare 5 points (current +/- 2 pints)

 select

 lag(x, 2) over w x_2,

 lag(x, 1) over w x_1,

 x,

 lead(x, 1) over w x1,

 lead(x, 2) over w x2,

 lag(y, 2) over w y_2,

 lag(y, 1) over w y_1,

 y,

 lead(y, 1) over w y1,

 lead(y, 2) over w y2

 from Func

 window w as (order by x)

) coef;

X Approximate
derivative

Exact
derivative

0 1.003 1.000

0.1 0.993 0.995

0.2 0.978 0.980

0.3 0.954 0.955

0.4 0.920 0.921

0.5 0.876 0.878

0.6 0.824 0.825

0.7 0.764 0.765

0.8 0.696 0.697

0.9 0.621 0.622

1 0.542 0.540

PostgreSQL Window Functions 2009

6 Anton Burtsev, http://anton-burtsev.livejournal.com

Integral

Query for the integral is a little bit more complex. Integral is a running sum of elementary squares under

the function. So we need two phases. 1 – to calculate elementary squares, 2- to calculate running sum.

In PostgreSQL window function can't be nested. So we should use a sub-query technique. If our function

equals to zero outside the x’es range within the Func table, we have our integral equals to zero at left-

most point. It allows us easily us use current and previous row to run calculation and never think about

edge effects so far (in previous case we had to).

select

 x,

 (coalesce(sum(ydx) over(order by x), 0))::numeric(18,3) integral,

 (-cos(x) + 1)::numeric(18,3) exact_integral

from

(

 select

 x,

 (y + lag(y) over w) / 2 * (x - lag(x) over w) ydx

 from Func

 window w as (order by x)

) t;

X Approximate
elementary
function

Exact
elementary
function

0 0.000 0.000

0.1 0.005 0.005

0.2 0.020 0.020

0.3 0.045 0.045

0.4 0.079 0.079

0.5 0.122 0.122

0.6 0.175 0.175

0.7 0.235 0.235

0.8 0.303 0.303

0.9 0.378 0.378

1 0.459 0.460

One more interesting task to discuss here is noise reduction. Here I mean the technique to determine

and remove points that were measured with definitely high error. Not the audio noise (the)

Stock control with FIFO costing
This section shows the combination of window functions in simple but real life example.

Stock control is a set of simple techniques to manage the stock. One of them is FIFO / LIFO method. This

method helps us to manage stock when we buy identical parts from different suppliers under the

different prices. We put all parts in single box but know the price for each part we then borrow from the

box. And also what is the cost of the currently stocked parts.

In this article I show the use of window functions to implement FIFO method. To control parts

movement through the stock we need an entity that helps us to control cost and size of every part set

that arrives or leaves the stock.

http://www.businesslink.gov.uk/bdotg/action/layer?r.l1=1073858805&topicId=1074039371&r.lc=en&r.l2=1073859143&r.s=tl
http://www.wisegeek.com/what-is-lifo-and-fifo.htm

PostgreSQL Window Functions 2009

7 Anton Burtsev, http://anton-burtsev.livejournal.com

create sequence number_seq;

create table Move

(

 Number int primary key default nextval('number_seq'),

 PartCount int,

 Cost numeric,

 Direction int -- 1 - receipt, 2 - shipment

);

This entity describes a set of parts under particular price. So all parts move are sequentially numbered.

Now we need to link all moves in order to be able to say what moves of type “receipt” provide parts for

each move of type “shipment”.

Now make some test moves:

insert into Move(PartCount, Cost, Direction) Values

-- receipts go with supplier cost

(30, 30, 1), (20, 24, 1), (30, 36, 1),

-- shipment cost will be defind with FIFO costing

(15, null, 2), (50, null, 2), (5, null, 2);

What we now have in the Move table:

select

 Number, PartCount, Cost,

 (Cost/PartCount)::numeric(18,2) Price,

 Direction

from Move order by Number;

Number Parts count Cost Part price Direction

1 30 30.00 1.00 1

2 20 24.00 1.20 1

3 30 36.00 1.20 1

4 15 2

5 50 2

6 5 2

To correlate receipts and shipments we can stack them in parallel stacked bars and the links (as

mentioned above) will be clearly seen.

Sh
ip

m
en

ts

R
eceip

ts

Q
u

an
tity o

f p
arts

PostgreSQL Window Functions 2009

8 Anton Burtsev, http://anton-burtsev.livejournal.com

Bold rectangles are moves, vertical spaces between dashed lines are links. So to find links we need to

enumerate dashed lines and link left and right moves of each line. The vertical distance between dashed

lines is the count of parts for the link. Each column may be got as running total for each type of move:

select

 Number ReceiptNumber,

 sum(PartCount) over (order by Number) Total

from Move

where Direction = 1;

Receipt number Total count

1 30

2 50

3 80

The stacked bar is built but we have no zero value so it is better to rewrite query as follows

-- Bottoms of receipts

select

 Number ReceiptNumber,

 sum(PartCount) over (order by Number) - PartCount Total

from Move

where Direction = 1

union all

-- Top of last receipt

select 0, sum(PartCount) from Move where Direction = 1;

Receipt number Total count

1 0

2 30

3 50

0 80

Now just combine receipts and shipments as follows

-- Bottoms of receipts

select

 0 ShipmentNumber,

 Number ReceiptNumber,

 sum(PartCount) over (order by Number) - PartCount Total

from Move where Direction = 1

union all

-- Top of last receipt

select 0, 0, sum(PartCount) from Move where Direction = 1

union all

-- Bottoms of shipments

select

 Number ShipmentNumber,

 0 ReceiptNumber,

PostgreSQL Window Functions 2009

9 Anton Burtsev, http://anton-burtsev.livejournal.com

 sum(PartCount) over (order by Number) - PartCount Total

from Move where Direction = 2

union all

-- Top of last shipment

select 0, 0, sum(PartCount) from Move where Direction = 2

order by Total;

Shipment
number

Receipt
number

Total count

0 1 0

4 0 0

5 0 15

0 2 30

0 3 50

6 0 65

0 0 70

0 0 80

There can be duplicate rows if sum(receipts) = sum(shipments). But we can’t filter them as we use

window functions that run after WHERE clause is evaluated. We will do it in the next step.

Each row of the query represents a link. But it has only one end defined (receipt or shipment). The other

end we can define if prolong last nonzero value from previous rows. We have no such window function.

But if we order rows by running total count (as it is done in table above) it will be simply maximum of

previous values. The count of parts of link is defined as next total value minus current one. The window

function for next value is lead(). So, we can write the following query

select

 max(ReceiptNumber) over (order by Total) ReceiptNumber,

 max(ShipmentNumber) over (order by Total) ShipmentNumber,

 lead(Total) over (order by Total) - Total Count

from

(

 -- Bottoms of receipts

 select

 0 ShipmentNumber,

 Number ReceiptNumber,

 sum(Count) over (order by Number) - Count Total

 from Move

 where Direction = 1

 union all

 -- Top of last receipt

 select 0, 0, sum(Count) from Move where Direction = 1

 union all

 -- Bottoms of shipments

 select

 Number ShipmentNumber,

 0 ReceiptNumber,

 sum(Count) over (order by Number) - Count Total

PostgreSQL Window Functions 2009

10 Anton Burtsev, http://anton-burtsev.livejournal.com

 from Move

 where Direction = 2

 union all

 -- Top of last shipment

 select 0, 0, sum(Count) from Move where Direction = 2

) t

where -- less than maximum shipment

 Total <= (select sum(Count) from Move where Direction = 2)

Receipt number Shipment number Link parts count

1 4 0

1 4 15

1 5 15

2 5 20

3 5 15

3 6 5

3 6

Links are built. We need to remove unnecessary rows and insert rows into the table for the next use:

create table RSLink

(

 ShipmentNumber int,

 ReceiptNumber int,

 PartCount int

);

insert into RSLink(ReceiptNumber, ShipmentNumber, PartCount)

select * from

(

 select

 max(ReceiptNumber) over (order by Total) ReceiptNumber,

 max(ShipmentNumber) over (order by Total) ShipmentNumber,

 lead(Total) over(order by Total) - Total PartCount

 from

 (

 -- Bottoms of receipts

 select

 Number ReceiptNumber,

 0 ShipmentNumber,

 sum(PartCount) over (order by Number) - PartCount Total

 from Move

 where Direction = 1

 union all

 -- Top of last receipt

 select 0, 0, sum(PartCount) from Move where Direction = 1

 union all

 -- Bottoms of shipments

 select

 0 ReceiptNumber,

 Number ShipmentNumber,

PostgreSQL Window Functions 2009

11 Anton Burtsev, http://anton-burtsev.livejournal.com

 sum(PartCount) over (order by Number) - PartCount Total

 from Move

 where Direction = 2

 union all

 -- Top of last shipment

 select 0, 0, sum(PartCount) from Move where Direction = 2

) t

 where -- less than maximum shipment

 Total <= (select sum(PartCount) from Move where Direction = 2)

) t2

where PartCount <> 0 and PartCount is not null;

Receipt
number

Shipment
number

Part
count

1 4 15

1 5 15

2 5 20

3 5 15

3 6 5

Now we are ready to calculate shipment costs using FIFO costing

update Move shipment

set Cost = fifo.ShipmentCost

from

(

 select

 link.ShipmentNumber,

 sum(receipt.Cost*link.PartCount/receipt.PartCount) ShipmentCost

 from RSLink link join Move receipt on receipt.Number =

link.ReceiptNumber

 group by link.ShipmentNumber

) fifo

where fifo.ShipmentNumber = shipment.Number;

Now look what we get

select

 Number, PartCount, Cost,

 (Cost/PartCount)::numeric(18,2) Price,

 Direction

from Move order by Number;

Number Parts count Cost Part price Direction

1 30 30.00 1.00 1

2 20 24.00 1.20 1

3 30 36.00 1.20 1

4 15 15.00 1.00 2

5 50 57.00 1.14 2

6 5 6.00 1.20 2

PostgreSQL Window Functions 2009

12 Anton Burtsev, http://anton-burtsev.livejournal.com

As we see, costs for shipment are calculated and prices slightly differ from the prices in receipts. What

we now can easily do is to calculate stock balance:

select

 sum(PartCount * (3-Direction*2)) "remaining parts",

 sum(Cost * (3-Direction*2)) "cost of remaining parts"

from Move;

Remaining parts Cost of remaining parts

10 90.00

Conclusion
Congratulations! PostgreSQL lovers are on the new level of efficiency and effectiveness. All queries

mentioned above are very fast (single table scan). This became possible due to window functions.

However, in version 8.4 some features can’t be found. Here I speak not about what SQL 2008 features

are not implemented. But about what I’d like to use. So I need a filter based on values of window

functions. As we have a clause for aggregates: WHERE -> GROUP BY -> HAVING, it’s good to have

something like WHERE -> window calculations -> WINDOW_HAVING. As far as window can be easily

materialized in memory (by removing first and adding next row) it can be very useful to treat window as

sub-query and allow all operations that allowed to real sub-queries.

bye.

